

UNIVERSIDAD TÉCNICA ESTATAL DE QUEVEDO FACULTAD DE CIENCIAS AMBIENTALES CARRERA DE INGENIERÍA FORESTAL

Proyecto de Investigación previo a la obtención del título de Ingeniero Forestal

Proyecto de Investigación

"Caracterización del banco de semillas de arvenses en plantaciones forestales de *Tectona grandis* L.f. (teca) en la zona central del litoral ecuatoriano, año 2019"

Autor:

Sánchez Ormaza Juan Carlos

Director del Proyecto de Investigación:

Ing. For. Edwin Jiménez Romero M.Sc.

Quevedo - Los Ríos - Ecuador

2019

DECLARACIÓN DE AUTORÍA Y CESIÓN DE DERECHOS

Yo, Sánchez Ormaza Juan Carlos, declaro bajo juramento que la investigación aquí

descrita es de mi autoría; el cual no ha sido previamente presentada para ningún grado o

calificación profesional y que he consultado las referencias bibliograficas que se incluyen

en este documento.

La Universidad Técnica Estatal de Quevedo, puede hacer uso de los derechos

correspondientes a este documento, según lo establecido por la Ley de Propiedad Intectual,

por su Reglamento y por la normatividad institucional vigente.

f. _____

Sánchez Ormaza Juan Carlos

C.C. 120536232-8

ii

CERTIFICACIÓN DE CULMINACIÓN DEL PROYECTO DE INVESTIGACIÓN

El suscrito, Ing. For. Edwin Jiménez Romero M.Sc., Docente de la Universidad Técnica Estatal de Quevedo, certifica que el estudiante Sánchez Ormaza Juan Carlos, realizó el Proyecto de Investigación de grado titulado "Caracterización del banco de semillas de arvenses en plantaciones forestales de *Tectona grandis* L.f. (teca) en la zona central del litoral ecuatoriano, año 2019", previo a la obtencion del título de Ingeniero Forestal, bajo mi dirección, habiendo cumplido con todas las disposiciones reglamentarias establecidas para el efecto.

f			
1.			

Ing. For. Edwin Jiménez Romero M.Sc.
DIRECTOR DEL PROYECTO DE INVESTIGACIÓN

UNIVERSIDAD TÉCNICA ESTATAL DE QUEVEDO FACULTAD DE CIENCIAS AMBIENTALES CARRERA DE INGENIERÍA FORESTAL

PROYECTO DE INVESTIGACIÓN

Título:

"Caracterización del banco de semillas de arvenses en plantaciones forestales de *Tectona grandis* L.f. (teca) en la zona central del litoral ecuatoriano, año 2019".

Presentado como requisito	o previo a la obtención del título de Ingeniero Forestal	Į
Aprobado por:		
	PRESIDENTE DEL TRIBUNAL	
	Ing. For. José Nieto Rodríguez Ph.D.	

INTEGRANTE DEL TRIBUNAL
Ing. For. Nicolás Cruz Rosero Ph.D.
Ing. For. Víctor Gutiérrez Lara M.Sc.

QUEVEDO – LOS RÍOS – ECUADOR 2019

AGRADECIMIENTO

Mi agradecimiento es infinito a Dios, por brindarme fuerza, bendiciones y sabiduría para concluir el presente trabajo.

A la Ing. For. Mercedes Carranza M.Sc., Decana de la Facultad de Ciencias Ambientales.

Al Ing. For. Carlos Belezaca Ph.D., Coordinador de la Carrera de Ingeniería Forestal.

Al Ing. For. Edwin Jiménez Romero M.Sc., Director, por sus enseñanzas y apoyo constante, a quien considero una persona digna y de gran admiración.

A quienes conformaron el tribunal de sustentación, Ing. For. José Nieto Rodríguez Ph.D. (Presidente), Ing. For. Nicolás Cruz Rosero Ph.D. (Integrante) e Ing. For. Víctor Gutiérrez Lara M.Sc. (Integrante), por sus acertadas observaciones, correcciones y sugerencias.

A la Unidad de Investigación de la UTEQ y al Ing. For. Elías Cuasquer Fuel M.Sc., Docente, por fomentar el desarrollo investigativo con ideas innovadoras orientadas a solucionar problemas en los sectores sociales y productivos de la región.

Al grupo empresarial ENDESA-BOTROSA, Ing. Carlos Carrión Ochoa (Gerente Administrativo Financiero de SERAGROFOREST S.A.) e Ing. Ángel Jácome Ph.D. (Director de la Fundación Bosques Para Siempre) por la oportunidad y apoyo brindado para la ejecución de este proyecto de investigación. Además, a quienes forman parte de su personal técnico que colaboraron de forma amable y desinteresada en las tareas de campo efectuadas.

A Angeline, C., Kevin, O., Mabel M., Delia, R., Mishell, M, Daniela, S., Jefferson A. y Melisa, O. quienes conformaron mi grupo de trabajo.

A mis maestros quienes compartieron sus sabios conocimientos, habilidades y experiencias profesionales durante mi formación académica.

A mis compañeros de clase con quienes he compartido gratos momentos.

A mis queridos tío(as) Isabel O., Stalin, O., Francisco, O. y Estrella S. y demás familiares que colaboraron de una u otra forma en el cumplimiento de este proyecto.

Finalmente, a la Universidad Técnica Estatal de Quevedo, mi alma mater, por haber abierto sus puertas para realizar mis estudios superiores.

¡Gracias a ustedes!

DEDICATORIA

El presente trabajo de investigación se lo dedico a:

A mí querida madre, María, por su cariño y comprensión, sin su ayuda, no hubiera podido llegar a cumplir esta meta. La vida no me alcanzaría para devolver todo lo que has hecho por mí.

A mís hermanos, Ivonne, Bolívar y Rubén, a quienes admiro y aprecio mucho.

RESUMEN Y PALABRAS CALVES

El presente proyecto de investigación se realizó con el objetivo de caracterizar el banco de semillas del suelo (BSS) en plantaciones de teca de la zona central del litoral ecuatoriano. En campo, se extrajeron 165 muestras suelo de 33 unidades de muestreo localizadas en los cantones de San Domingo (La Palma), Valencia (Yurac Yacu y El Vergel), Quevedo (San Carlos) y Balzar (San Pedro), con el empleo de un cilindro de metal. La muestras fueron preparadas y llevadas a un invernadero donde se depositaron en bandejas de germinación. Se realizó el conteo, registro de número individuos y extracción de plántulas de especies que luego se identificaron mediante investigación en bibliografía especifica. Se determinaron: la densidad y composición de BSS, el índice de valor de importancia (IVI) de especies y, los índices de diversidad alfa y beta. Se identificaron un total de 80 especies pertenecientes a 36 familias (entre definidas e indeterminadas). La densidad total de semillas estimado osciló entre 54,88 y 384,66 millones de semillas.ha⁻¹. Se observó predominancia de individuos de origen nativo (81,74%), ciclo de vida anual (49,85%), tipo de propagación mediante semillas (80,53%) y medio de dispersión principalmente por acción antrópica (33,97%). Las especies que registraron el IVI más alto fueron Cyperus esculentus L., Boehmeria sp., Mollugo verticillata L., Laportea aestuans (L.) Chew, Cyperus odoratus L. y Scirpus sp. En la mayoría de los sitios de estudio, la diversidad de Shannon fue media (entre 1,09 y 2,57) y Simpson alta (entre 0,77 y 0,90). El análisis clúster diferenció claramente los sitios de estudio con tendencia a agruparse en ambas edades de plantación. EL ANOVA por su parte indicó que, no existen diferencias significativas (H₀) por número de individuos en los BSS evaluados.

Palabras claves: banco de semillas del suelo, teca, composición, diversidad, similaridad.

ABSTRACT AND KEYWORDS

The present research project was carried out with the objective of characterizing the soil seed bank (SSB) in teak plantations in the central area of the ecuadorian littoral. In the field, 165 soil samples were extracted from 33 sampling units located in the cantons of San Domingo (La Palma), Valencia (Yurac Yacu and El Vergel), Quevedo (San Carlos) and Balzar (San Pedro), with the use of a metal cylinder. The samples were prepared and taken to a greenhouse where they were deposited in germination trays. The counting, registration of number of individuals and extraction of seedlings of species that were later identified by research in specific bibliography was carried out. The following were determined: the density and composition of BSS, the importance value index (IVI) of species, and the alpha and beta diversity indices. A total of 80 species belonging to 36 families were identified (between defined and indeterminate). The estimated total seed density ranged from 54,88 to 384,66 million seeds.ha⁻¹. It was observed predominance of individuals of native origin (81,74%), annual life cycle (49,85%), propagation type by seeds (80,53%) and dispersion medium mainly by anthropic action (33,97%). The species that registered the highest IVI were Cyperus esculentus L., Boehmeria sp., Mollugo verticillata L., Laportea aestuans (L.) Chew, Cyperus odoratus L. and Scirpus sp. In most of the study sites, the Shannon diversity was medium (between 1,09 and 2,57) and Simpson high (between 0,77 and 0,90). Cluster analysis clearly differentiated study sites with a tendency to group in both plantation ages. The ANOVA for its part indicated that, there are no significant differences (H₀) by number of individuals in the BSS evaluated.

Keywords: soil seed bank, teak, composition, diversity, similarity.

TABLA DE CONTENIDO

PORTADA	1
DECLARACIÓN DE AUTORÍA Y CESIÓN DE DERECHOS	ii
CERTIFICACIÓN DE CULMINACIÓN DEL PROYECTO DE INVESTIGACIÓN.	iii
CERTIFICADO DE APROBACIÓN POR TRIBUNAL DE SUSTENTACIÓN	iv
AGRADECIMIENTO	v
DEDICATORIA	vii
RESUMEN Y PALABRAS CLAVES	viii
ABSTRACT AND KEYWORDS	ix
TABLA DE CONTENIDO	x
ÍNDICE DE TABLAS	xiv
ÍNDICE DE FIGURAS	xvi
ÍNDICE DE ECUACIONES	xix
ÍNDICE DE ANEXOS	xx
CÓDIGO DUBLIN	xxiii
INTRODUCCIÓN	1
CAPÍTULO I. MARCO CONTEXTUAL DE LA INVESTIGACIÓN	3
1.1. Problema de la Investigación	4
1.1.1. Diagnóstico	4
1.1.2. Pronóstico	4
1.1.3. Formulación del problema	4
1.1.4. Sistematización del problema	4
1.2. Objetivos	5
1.2.1. General	5
1.2.2. Específicos	5
1.3. Hipótesis	5
1.4. Justificación	5
CAPÍTULO II. FUNDAMENTACIÓN TEÓRICA DE LA INVESTIGACIÓN	6
2.1. Marco conceptual	7
2.1.1. Plantas arvenses	7
2.1.2. Banco de semillas del suelo	7
2.1.3. Plantaciones forestales	7

	2.1.4.	Análisis estructural	7
	2.1.5.	Sucesión vegetal	8
2.2.	Marc	o referencial	8
	2.2.1.	Reproducción de las arvenses	8
	2.2.2.	El papel del banco de semillas en la comunidad	9
	2.2.3.	Dinámica del banco de semillas	. 10
	2.2.4.	Distribución horizontal y vertical de las semillas en el suelo	. 10
	2.2.5.	Clasificación de bancos de semillas	. 11
	2.2.6.	Métodos para analizar el banco de semillas del suelo	. 11
	2.2.7.	Frecuencia de especies	. 12
	2.2.8.	Densidad de especies	. 12
	2.2.9.	Abundancia de especies	. 13
	2.2.10.	Índices de riqueza	. 13
	2.2.11.	Índices de diversidad	. 13
	2.2.12.	Índices de similitud	. 13
	2.2.13.	Investigaciones relacionadas	. 14
CA	PÍTULO	O III. METODOLOGÍA DE LA INVESTIGACIÓN	. 16
3.1.	Mate	riales y métodos	. 17
	3.1.1.	Localización de la zona de estudio	. 17
	3.1.2.	Límites	. 17
	3.1.3.	Características edafoclimáticas del cantón Santo Domingo	. 18
	3.1.4.	Características edafoclimáticas del cantón Valencia	. 18
	3.1.5.	Características edafoclimáticas del cantón Quevedo	. 19
	3.1.6.	Características edafoclimáticas del cantón Balzar	. 19
	3.1.7.	Materiales	. 19
	3.1	1.7.1. Materiales de campo	. 21
	3.1	1.7.2. Materiales de oficina	. 21
	3.1	1.7.3. Software	. 22
3.2.	Tipo	de investigación	. 22
3.3.	Meto	dología	. 22
	3.3.1.	Trabajo de campo	. 22
	3.3	3.1.1. Establecimiento de unidades de muestreo (UM)	. 22
	3.3	3.1.2. Muestreo del banco de semillas	. 24
		3.3.1.2.1. Método de muestreo	. 24

3.3.1.2.2. Recolección de muestras	. 24
3.3.1.2.3. Tamaño de la muestra	. 25
3.3.1.2.4. Codificación de muestras	. 26
3.3.2. Trabajo de laboratorio	. 26
3.3.2.1. Diseño del vivero	. 26
3.3.2.2. Preparación de muestras en bandejas germinadoras	. 27
3.3.2.3. Distribución de bandejas germinadoras en el área de germinación	. 28
3.3.2.4. Manejo de plántulas	. 30
3.3.2.5. Identificación de plántulas	. 30
3.3.3. Tratamiento de los datos	. 31
3.3.3.1. Densidad del banco de semillas	. 31
3.3.3.1.1. Densidad por UM (semillas.UM ⁻¹)	. 31
3.3.3.1.2. Densidad total por ha (semillas.ha ⁻¹)	. 31
3.3.3.2. Composición del banco de semillas	. 31
3.3.3.3. Evaluación de la estructura vegetal	. 32
3.3.3.1. Frecuencia absoluta (F _i)	. 33
3.3.3.2. Frecuencia relativa (FR _i)	. 33
3.3.3.3. Densidad absoluta (D _i)	. 34
3.3.3.4. Densidad relativa (DR _i)	. 34
3.3.3.5. Abundancia absoluta (A _i)	. 35
3.3.3.6. Abundancia relativa (AR _i)	. 35
3.3.3.7. Índice de valor de importancia (IVI)	. 36
3.3.3.4. Evaluación de la diversidad	. 36
3.3.3.4.1. Índice de riqueza de Margalef (D _{Mg})	. 36
3.3.3.4.2. Índice de equitatividad de Pielou (J')	. 37
3.3.3.4.3. Índice de diversidad Shannon-Weaver (H')	. 38
3.3.3.4.4. Índice de diversidad de Simpson (S)	. 39
3.3.3.4.5. Índice de similitud de Jaccard (I _J)	. 40
3.3.3.5. Análisis estadístico	. 41
CAPÍTULO IV. RESULTADOS Y DISCUSIÓN	. 42
4.1. Densidad y composición del banco de semillas de arvenses en plantaciones de teca	a de
la zona central del litoral ecuatoriano	. 43
4.1.1. Familias botánicas presentes en el banco de semillas	. 43
4.1.2. Presencia y ausencia	. 44

4.1.3. Densidad total del banco de semillas	44
4.1.4. Densidad absoluta de semillas por especie	48
4.1.5. Composición del banco de semillas de arvenses	48
4.1.5.1. Origen	48
4.1.5.2. Dispersión	57
4.1.5.3. Ciclo de vida	59
4.1.5.4. Propagación	59
4.1.5.5. Forma de vida	60
4.1.5.6. Tipo de planta	61
4.2. Índice de valor de importancia del banco de semillas de arvenses en plantacione	es de
teca en la zona central del litoral ecuatoriano	62
4.2.1. La Palma	62
4.2.2. Yurac Yacu	63
4.2.3. El Vergel	66
4.2.4. San Carlos	68
4.2.5. San Pedro	70
4.3. Diversidad y similaridad de arvenses del banco de semillas del suelo en plantaci	iones
de teca en la zona central del litoral ecuatoriano	71
4.3.1. Número de individuos e índices de diversidad alfa	71
4.3.2. Similaridad de especies	72
4.3.2.1. Índice de Jaccard	72
4.3.2.2. Análisis clúster	72
4.3.3. Análisis de varianza por número de individuos	74
4.4. Discusión	74
CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES	77
5.1. Conclusiones	78
5.2. Recomendaciones	79
CAPÍTULO VI. BIBLIOGRAFÍA	80
6.1. Literatura Citada	81
CAPÍTULO VII ANEXOS	92

ÍNDICE DE TABLAS

Núm	. P	ág.
1.	Producción de semillas de algunas especies de arvenses	8
2.	Ubicación de las plantaciones de teca de 8, 9, 10 y 12 años	17
3.	Descripción y localización de las UM en plantaciones de teca de 8, 9, 10 y 12 años	23
4.	Número y volumen total (cm³) de muestras de suelo recolectadas en plantaciones de teca	25
5.	Caracteres de clasificación de especies en el banco de semillas	32
6.	Escala para la interpretación de resultados del índice de Margalef (D_{Mg})	37
7.	Escala para la interpretación de resultados del índice de Pielou (J')	38
8.	Escala para la interpretación de resultados del índice de Shannon-Wiever (H')	39
9.	Escala para la interpretación de resultados del índice de Simpson (S)	40
10.	Escala para la interpretación de resultados del índice de Jaccard (I_J)	41
11.	Presencia y ausencia de especies del banco de semillas del suelo en plantaciones forestales de teca de diferentes edades establecidas en La Palma, Yurac Yacu, El Vergel, San Carlos y San Pedro, año 2019.	45
12.	Densidad total del banco de semillas del suelo en plantaciones forestales de teca de la zona central del litoral ecuatoriano, año 2019	48
13.	Densidad absoluta (D_i) de especies del banco de semillas del suelo en plantaciones forestales de teca de la zona central del litoral ecuatoriano 2019	49
14.	Familia, especie, origen dispersión ciclo debida propagación forma de vida y tipo de plantas de las semillas germinadas del banco de semillas del suelo en plantaciones forestales de teca de la zona central del litoral ecuatoriano, año 2019	52

Núm. Pág.

15.	Número de individuos según su forma de vida: árbol (Ar), arbusto (Arb), hierba (Hi), helecho (He), trepadora (Tr) e indeterminada (Ind), presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019	61
16.	Valores de parámetros de diversidad alfa de especies presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019	
17.	Matriz de índices de Jaccard calculados en función del número de individuos presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.	73
18.	Análisis de varianza por número de individuos del banco de semillas del suelo en plantaciones de teca en la zona central del litoral ecuatoriano, año 2019	74
19.	Prueba de separación de medias de Tukey de acuerdo al número de individuos registrados en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019	74

ÍNDICE DE FIGURAS

Núm	. I	Pág.
1.	Mapa de ubicación de los sitios de estudio en la zona central del litoral ecuatoriano	20
2.	Ubicación de las subunidades de muestreo (SM) para colecta de muestras de suelo	24
3.	Dimensiones del cilindro (a) y placa de metal (b) para extraer de muestras de suelo	25
4.	Estructura de la codificación empleada para identificar las muestras colectadas de suelo en campo	26
5.	Infraestructura general del vivero	27
6.	Bandeja para germinación de arvenses en muestras de suelo	28
7.	Distribución de bandejas de germinación con muestras de suelo provenientes de plantaciones de teca localizadas en varios cantones de la zona central del litoral ecuatoriano, año 2019.	
8.	Diagrama de proporción de especies y géneros agrupados por familias del banco de semillas de arvenses en plantaciones forestales de teca de las zona central del litoral ecuatoriano, año 2019	43
9.	Número de individuos (en porcentaje) de origen: nativo (Nv), exótico (Ex) e indeterminado (Ind) presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019	
10.	Número de individuos (en porcentaje) en función a la forma de dispersión: anemocoria (A), autocoria (Au), hidrocoria (H), hemerocoria (Hm), zoocoria (Z) e indeterminada (Ind), presentes en el banco de semillas del suelo en plantaciones forestales de teca de la zona central del litoral ecuatoriano, año 2019	
11.	Número de individuos (en porcentaje) con clico de vida: anual (An), perenne (P) e indeterminado (Ind) presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019	59

12.	Número de individuos (en porcentaje) con tipo de propagación por: semillas (S), vegetativa (V) e indeterminado (Ind), presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019	60
13.	Número de individuos (en porcentaje) de clase: dicotiledónea (D), monocotiledónea (M) e indeterminado (Ind), presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019	61
14.	Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 8 años para el sitio La Palma del cantón Santo Domingo, provincia de Santo Domingo de los Tsáchilas, año 2019.	60
15.	Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 10 años para el sitio La Palma del cantón Santo Domingo, provincia de Santo Domingo de los Tsáchilas, año 2019.	
16.	Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 8 años para el sitio Yurac Yacu del cantón Valencia, provincia de Los Ríos, año 2019	64
17.	Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 10 años para el sitio Yurac Yacu del cantón Valencia, provincia de Los Ríos, año 2019	65
18.	Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 8 años para el sitio El Vergel del cantón Valencia, provincia de Los Ríos, año 2019	66
19.	Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 10 años para el sitio El Vergel del cantón Valencia, provincia de Los Ríos, año 2019	67

Pág.

Núm. Pág.

20.	Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 9 años para el sitio San	
	Carlos del cantón Quevedo, provincia de Los Ríos, año 2019	68
21.	Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 12 años para el sitio San	60
	Carlos del cantón Quevedo, provincia de Los Ríos, año 2019	69
22.	Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 9 años para el sitio San Pedro	
	del cantón Balzar, provincia del Guayas, año 2019	70
23.	Agrupación de los cinco sitios de estudio por edad de plantación conforme a la	
	similaridad de especies registradas en el banco de semillas del suelo en plantaciones de	
	teca de la zona central del litoral ecuatoriano, año 2019	73

ÍNDICE DE ECUACIONES

Núm		Pág.
1.	Ecuación de densidad de semillas por UM	31
2.	Ecuación de densidad total de semillas por ha	31
3.	Ecuación de frecuencia absoluta	33
4.	Ecuación de frecuencia relativa	33
5.	Ecuación de densidad absoluta	34
6.	Ecuación de densidad relativa	34
7.	Ecuación de abundancia absoluta	35
8.	Ecuación de abundancia ralativa	35
9.	Ecuación del índice de valor de importancia	36
10.	Ecuación de riqueza de Margalef	37
11.	Ecuación de equitatividad de Pielou	37
12.	Ecuación de diversidad de Shannon-Weaver	38
13.	Ecuación de diversidad de Simpson.	39
14	Ecuación de similitud de Jaccard	40

ÍNDICE DE ANEXOS

Núm	.	Pág.
1.	Hoja de registro empleada para el inventario de plántulas/plantas del banco de semillas del suelo presentes en las UM establecidas en los sitios de estudio	
2.	Datos del inventario del banco de semillas del suelo en plantaciones de teca de 8 años correspondiente al sitio La Palma, cantón Santo Domingo, año 2019	
3.	Datos del inventario del banco de semillas del suelo en plantaciones de teca de 10 años correspondiente al sitio La Palma, cantón Santo Domingo, año 2019	
4.	Datos del inventario del banco de semillas del suelo en plantaciones de teca de 8 años correspondiente al sitio Yurac Yacu, cantón Valencia, año 2019	
5.	Datos del inventario del banco de semillas del suelo en plantaciones de teca de 10 años correspondiente al sitio Yurac Yacu, cantón Valencia, año 2019	97
6.	Datos del inventario del banco de semillas del suelo en plantaciones de teca de 8 años correspondiente al sitio El Vergel, cantón Valencia, año 2019	98
7.	Datos del inventario del banco de semillas del suelo en plantaciones de teca de 10 años correspondiente al sitio El Vergel, cantón Valencia, año 2019	
8.	Datos del inventario del banco de semillas del suelo en plantaciones de teca de 9 años correspondiente al sitio San Carlos, cantón Quevedo, año 2019	
9.	Datos del inventario del banco de semillas del suelo en plantaciones de teca de 12 años correspondiente al sitio San Carlos, cantón Quevedo, año 2019	
10.	Datos del inventario del banco de semillas del suelo en plantaciones de teca de 9 años correspondiente al sitio San Pedro, cantón Balzar, año 2019	
11.	Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 8 años correspondiente al sitio La Palma, cantón San Domingo, año 2019	;

12.	Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 10 años correspondiente al sitio La Palma, cantón San Domingo, año 2019	
13.	Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 8 años correspondiente al sitio Yurac Yacu, cantón Valencia, año 2019	
14.	Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 10 años correspondiente al sitio Yurac Yacu, cantón Valencia, año 2019	
15.	Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 8 años correspondiente al sitio El Vergel, cantón Valencia, año 2019	
16.	Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 10 años correspondiente al sitio El Vergel, cantón Valencia, año 2019	
17.	Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 9 años correspondiente al sitio San Carlos, cantón Quevedo, año 2019	
18.	Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 12 años correspondiente al sitio San Carlos, cantón Quevedo, año 2019	
19.	Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 9 años correspondiente al sitio San Pedro, cantón Balzar, año 2019	
20.	Valores calculados de abundancia de individuos de acuerdo a su origen (exótico, nativo e indeterminada) en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019	

Pág.

21.	Valores calculados de abundancia de individuos de acuerdo a la forma de dispersión de semillas (anemócora, autocora, hidrocora, hemerocora, zoócora e indeterminada) en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.	
22.	Valores calculados de abundancia de individuos de acuerdo a su ciclo de vida (anual, perenne e indeterminada) en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019	
23.	Valores calculados de abundancia de individuos de acuerdo al tipos de propagación (semilla, vegetativa e indeterminada) en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019	113
24.	Valores calculados de abundancia de individuos de acuerdo a su forma de vida (árbol, arbusto, hierba, helecho, trepadora e indeterminada) en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019	113
25.	Valores calculados de abundancia de individuos de acuerdo al tipo de planta (dicotiledónea, monocotiledónea e indeterminada) en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019	
26.	Fotografías del trabajo de campo y laboratorio efectuado para caracterizar el banco de semillas del suelo en plantaciones de teca localizadas en los cantones San Domingo, Valencia, Quevedo y Balzar, año 2019	114
27.	Fotografías del proceso de crecimiento de plántulas en bandeja de germinación con muestra de suelo proveniente de la UM2 (SM4) correspondiente a una plantación de teca de 10 años para el sitio Yurac, cantón Valencia, año 2019	115
28.	Fotografías de algunas arvenses encontradas en el banco de semillas del suelo de plantaciones de teca en la zona central del litoral ecuatoriano, año 2019	116

CÓDIGO DUBLIN

	"Caracterización del banco de semillas de arvenses en plantaciones forestales de Tectona grandis L.f. (teca) en la zona central del litoral ecuatoriano, año 2019"					
Autor:	· ·					
Palabras clave:	Banco de semillas	Teca	Composición	Diversidad	Similaridad	
Fecha de publicación:				l		
Editorial:	FCAMB; Carrera de Ingeniería Forestal; Sánchez, J.					
Resumen: (hasta 300 palabras)	del suelo Teca Composición Diversidad Similaridad					
Descripción:	Hojas: dimensiones,	29 x 21 cr	n + CD-ROM			
URI:						

INTRODUCCIÓN

Las semillas son la principal fuente de dispersión de las arvenses, garantizando su perpetuidad a través de generaciones continuas. La estrategia más común de regeneración de las arvenses es la acumulación de semillas en el suelo, donde conforman subpoblaciones que ocupan diferentes micro sitios en el mismo. A la población total de semillas se la llama "banco de semillas", y está formado por semillas germinables o en estado latente. La capacidad de almacenamiento de semillas de arvenses en el suelo, depende de muchos factores que tienen que ver con la naturaleza misma de estas y, de las condiciones bióticas y abióticas del suelo (Vargas y Blanco, 2012).

El banco de semillas del suelo (BSS) es fundamental para el funcionamiento del ecosistema, ya que al presentarse una perturbación pueden germinar, iniciando el proceso sucesional, por ejemplo, al haber más luz disponible, se dispara la germinación de algunas especies como *Alnus acuminata* (Gil *et al.*, 2009). En suelo cultivados, la persistencia de arvenses está dada por propágulos vegetativos o por semillas, ejerciendo generalmente un efecto negativo de competencia por agua, luz y nutrientes con cultivos de interés comercial. También pueden causar alelopatía o reducción cualitativa y cuantitativa de la producción (Favreto y Medeiros, 2006; Lorenzi, 2000).

El litoral ecuatoriano posee condiciones óptimas de clima y suelos que favorecen el desarrollo de arvenses como coquito (*Cyperus rotundus* L.), saboya (*Panicum maximun* Jacq.), la caminadora (*Rottboellia exaltata* L.f.) y otras, que progresan de manera agresiva y vigorosa, dificultando el control y uso de los suelos. Las especies perennes, especialmente gramíneas y ciperáceas, son un gran problema y la principal herramienta de control se basa en el uso de herbicidas. Herbicidas postemergentes como paraquat y glifosato se usan ampliamente. El paraquat defolia virtualmente a todas las especies de malezas, pero el glifosato es más útil para controlar especies perennes, sin embargo, la eficiencia de este control es cuestionable, debido a la metodología por la cual se selecciona el herbicida (Vera *et al.*, 2018).

La gestión integrada de arvenses es la selección de los métodos de control y el desarrollo de criterios para su uso, que garantizan consecuencias favorables desde los puntos de vista

económicos, ecológicos y sociológicos. En este sentido, la primera acción que tomar en el manejo de arvenses en cualquier área es el levantamiento fitosociológico de la comunidad, involucrando la composición, frecuencia, densidad, abundancia e índice de valor de importancia. Además, la toma de muestras del BSS o de las arvenses emergentes permiten identificar y cuantificar una comunidad, así como conocer su evolución. Esta información se puede utilizar en la predicción de las necesidades de control, adaptándose a diferentes manejos de suelos, de cultivos y de herbicidas (Monquero y Silva, 2007), considerando estos aspectos, el presente proyecto se desarrolló con el objetivo de caracterizar el BSS en plantaciones forestales de teca en la zona central del litoral ecuatoriano.

CAPÍTULO I MARCO CONTEXTUAL DE LA INVESTIGACIÓN

1.1. Problema de la Investigación

1.1.1. Diagnóstico

Existen estudios limitados de la composición florística de arvenses en el estrato bajo asociado a cultivos agrícolas y muy pocos en plantaciones forestales en el litoral ecuatoriano. No se ha reportado ningún tipo de estudio de la diversidad y densidad poblacional de arvenses en el banco de semillas de plantaciones de teca.

1.1.2. Pronóstico

Se pronostica que en los bancos de semillas exista una alta densidad de individuos de la familias Poaceae y Cyperaceae, que presenten una diversidad media y alta similitud en ambas edades de plantación por sitio de estudio.

1.1.3. Formulación del problema

¿Cuál es la diversidad y densidad del banco de semillas de arvenses en plantaciones de teca en la zona central del litoral ecuatoriano?

1.1.4. Sistematización del problema

¿Cuál es la densidad y composición de semillas de arvenses en plantaciones de teca?

¿Cuál es el índice de valor de importancia de arvenses del banco de semillas presentes en plantaciones de teca?

¿Cuál es la diversidad y similaridad de arvenses del banco de semillas en plantaciones de teca?

1.2. Objetivos

1.2.1. General

Caracterizar el banco de semillas de arvenses en plantaciones forestales de teca en la zona central del litoral ecuatoriano, año 2019.

1.2.2. Específicos

- Determinar la densidad y composición del banco de semillas de arvenses en plantaciones de teca.
- Calcular el índice de valor de importancia de arvenses del banco de semillas de arvenses presentes en plantaciones de teca.
- Determinar la diversidad y similaridad de arvenses del banco de semillas en plantaciones de teca.

1.3. Hipótesis

H₀ No existen diferencias significativas en el banco de semillas del suelo en plantaciones de teca en la zona central del litoral ecuatoriano.

H₁ Existen diferencias significativas en el banco de semillas del suelo en plantaciones de teca en la zona central del litoral ecuatoriano.

1.4. Justificación

El conocimiento de la composición del BSS ayuda a entender la dinámica del ecosistema, proporcionando información acerca del estado de la sucesión vegetal, de las especies potencialmente capaces de reemplazar a las existentes y del tipo de especies que componen la vegetación presente en plantaciones de teca en la zona central del litoral ecuatoriano. Este estudio se realizó con el fin de establecer criterios de manejo y control silvicultural.

CAPÍTULO II FUNDAMENTACIÓN TEÓRICA DE LA INVESTIGACIÓN

2.1. Marco conceptual

2.1.1. Plantas arvenses

Se consideran como arvenses a todas las plantas superiores, que por crecer junto o sobre plantas cultivadas, perturban o impiden el desarrollo normal, encarecen el cultivo y merman sus rendimientos o la calidad (Blanco, 2016).

2.1.2. Banco de semillas del suelo

El banco de semillas del suelo, se ha definido como el grupo de semillas viables presentes en y sobre el suelo o asociadas a la hojarasca en un tiempo determinado, potencialmente capaces de reemplazar las plantas anuales, las que mueren por causas naturales o no, las susceptibles a muerte por enfermedad, perturbación o consumo de animales incluidos los humanos (Bedoya *et al.*, 2010).

2.1.3. Plantaciones forestales

Son ecosistemas forestales constituidos a partir de la intervención humana mediante la instalación de una o más especies forestales, nativas o introducidas, con fines de producción de madera o productos forestales diferentes a la madera, de protección, de restauración ecológica, de recreación, de provisión de servicios ambientales o cualquier combinación de los anteriores (OSINFOR, 2016).

2.1.4. Análisis estructural

El análisis estructural de una comunidad vegetal, se hace con el propósito de valorar sociológicamente una muestra y establecer su categoría en la asociación. La estructura horizontal permite evaluar el comportamiento de los árboles individuales y de las especies en la superficie del bosque. Esta estructura puede evaluarse a través de índices que expresan la ocurrencia de las especies, lo mismo que su importancia ecológica dentro del ecosistema, es el caso de las abundancias, frecuencias y dominancias (Alvis, 2009).

2.1.5. Sucesión vegetal

De acuerdo a Díaz (2007) es un proceso en el cual, a partir de un lugar sin vegetación, en el que se instalan especies vegetales pioneras, y que luego de esta se suceden cambios continuos en la vegetación que dan lugar a nuevas comunidades vegetales hasta llegar a un estado complejo, en equilibrio con el ambiente y otros factores bióticos, denominada vegetación clímax o comunidad final, en la cual la tendencia es a reducir los cambios extremos microclimáticos y edáficos.

2.2. Marco referencial

2.2.1. Reproducción de las arvenses

Una característica común en muchas arvenses es su capacidad de reproducirse simultáneamente por la vía sexual (producción de semillas) y por la asexual (diferenciación de yemas en estructuras vegetativas). Las arvenses producen un número de semillas relativamente grande, aunque el número medio varía notablemente de una especie a otra y aún dentro de una misma especie, el número de semillas producido va a variar dependiendo del vigor de la planta, de las condiciones en que se ha desarrollado, del ataque de insectos u hongos y del éxito de la polinización durante la floración. Por regla general, las especies perennes necesitan menor cantidad de semillas que las especies de vida corta. Las arvenses anuales y bianuales dependen más que todo de la producción de semillas como medio de propagación y supervivencia. En la Tabla 1, se presenta la producción de semillas de algunas especies de arvenses comunes en campos (Alemán, 2004).

Tabla 1. Producción de semillas de algunas especies de arvenses.

Especies	Número /planta	Número /kilo	Peso 1000 (g) semillas
Echinochloa crus-galli	7160	713430	1,40
Chenopodium album	72450	1426854	0,70
Amaranthus sp.	117400	2628421	0,58
Portulaca oleracea	52300	7683100	0,13
Digitaria sanguinalis	8246	3722200	0,27

Fuente: CIAT (1976) citado por Alemán (2004).

Es bueno destacar que, no todas estas semillas germinarán, sino que la viabilidad varía de una especie a otra. Muchos suelos agrícolas están llenos de semillas de arvenses, las cuales germinarán una vez que sean llevadas a la superficie por medio de las labores previas a la siembra (Alemán, 2004).

La reproducción asexual está definida por un tipo de reproducción clonal que se traduce en la copia exacta del fenotipo de la planta materna, sin que exista segregación genética o recombinación de cromosomas. La reproducción vegetativa comprende la propagación de la planta a partir de estructuras vegetativas persistentes y su posterior fragmentación, presentes en numerosas malezas perennes como: rizomas, que son tallos subterráneos que producen raíces y brotes adventicios (*Sorghum halepense*, *Elitrigia repens*, *Cyperus rotundus*); estolones, que consisten en tallos que crecen sobre la superficie del suelo y diferencian raíces y brotes vegetativos (*Cynodon dactylon, Digitaria sanguinalis*); bulbos, que se definen como yemas modificadas cubiertas de hojas carnosas (*Allium vineale*, *Cyperus rotundus*); y tubérculos, que se refiere a porciones de rizomas terminales engrosados ricos en sustancia de reserva y provistos de yemas axilares (*Cyperus rotundus*, *Helianthus tuberosus*, *Potamogeton pectinatus*). Una de las características importantes de las formas de propagación vegetativa, es su capacidad de colonizar y expandirse rápidamente con un elevado potencial de supervivencia, favorecida por la existencia de un banco de yemas en el perfil del suelo (Alemán, 2004).

2.2.2. El papel del banco de semillas en la comunidad

La densidad de semillas, persistencia y composición en especies del banco de una comunidad vegetal son factores que varían enormemente, dependiendo de la región climática a la que pertenezca dicha comunidad, del tipo de vegetación que la componga y de las perturbaciones a las que se vea sometida (Villa *et al.*, 2004).

El papel del banco de semillas en los bosques presenta diferentes aspectos. En primer lugar, puede influir en los procesos evolutivos de la comunidad, dada su tendencia a tener una estructura genética distinta de la de la vegetación epígea; de esta forma, puede reducir el riesgo de extinción local de especies vulnerables. Por otro lado, es una fuente crucial de regeneración de la comunidad vegetal tras un episodio de perturbación, sea natural, como un

incendio o la apertura de claros en el bosque por derrumbe de árboles, o de origen antrópico, como la deforestación o los tratamientos silvícolas. Las especies que forman banco de semillas pueden coexistir en ambientes temporalmente variables, contribuyendo a la diversidad de la comunidad. La diversidad florística de una comunidad debería incluir a las especies contenidas en el banco de semillas (Villa *et al.*, 2004).

2.2.3. Dinámica del banco de semillas

La dinámica del banco de semillas puede entenderse como el balance de los procesos de entrada (llamados procesos de depósito) y salida (llamados procesos de retirada) de estructuras de reproducción en el suelo, lo que determina la densidad del banco de semillas. Los procesos de depósito se rigen por: producción y diseminación de estructuras reproductivas de especies presentes en la zona (conocida como lluvia de semillas, aunque, no necesariamente, sean sólo semillas); diseminación de estructuras reproductivas de especies presentes en la zona, pero provenientes de otras zonas; diseminación de estructuras reproductivas de especies no presentes en la zona, provenientes, lógicamente, de otras zonas. Mientras que, los procesos de retirada se rigen por: depredación y deterioro, procesos que causan algún daño en la semilla y que obstaculizan la germinación; muerte fisiológica (o senescencia), un proceso que inviabiliza, naturalmente, las semillas por acción del tiempo; y la germinación misma, que elimina las semillas del suelo, generando un nuevo individuo. (Carvalho, 2013).

2.2.4. Distribución horizontal y vertical de las semillas en el suelo

Se han realizado numerosos estudios relacionados con la distribución vertical de semillas enterradas, pero hay escasa información acerca de la distribución horizontal de semillas en el suelo. No se conocen los mecanismos de dispersión horizontal de las especies que se encuentran en una determinada área de estudio ni las distancias que recorren sus estructuras de diseminación, por ello, no es posible determinar si existe una distribución agregada de las semillas alrededor de la planta madre (Thompson, 1986 citado por Acosta y Agüero, 2001).

Las poblaciones pueden distribuirse de dos maneras: en forma agregada (contagiosa), con gran cantidad de individuos en algunas muestras y escasos o nulos en otras; y en forma uniforme (regular), que por lo general es difícil de encontrar en arvenses. La distribución agregada es muy común, con la característica que la varianza es mucho más grande que la media; esto puede deberse a: exclusión de especies de un área por factores ambientales desfavorables, presencia de especies competidoras, mecanismos ineficientes de dispersión de propágulos y propagación vegetativa. Para una correcta elección del número de muestras suficientes para estimar la densidad de semillas en el suelo, lo deseable es conocer la distribución horizontal de las principales especies presentes en el banco (Goyeau y Fablet, 1982; Greig, 1983; Roberts, 1958; mencionados por Acosta y Agüero, 2001).

Las semillas en el suelo son usualmente más abundantes cerca de la superficie y su densidad declina rápidamente con la profundidad. La declinación de la diversidad con la profundidad puede deberse a la compactación del suelo, ya que sólo las especies de semillas pequeñas pueden penetrar a mayor profundidad (Harper, 1977; Iverson y Wali, 1982; Milton, 1939; Pareja *et al.*, 1985; citados por Acosta y Agüero, 2001).

2.2.5. Clasificación de bancos de semillas

Thompson y Grime (1979) mencionados por Figueroa y Jaksic (2004) dividen al banco de semillas en dos grupos: banco de semillas transitorio, que es la fracción de semillas enterradas principalmente en los horizontes superiores del suelo (< 5 cm de la superficie) y que no permanece más de 1 año viable sin germinar, está constituido principalmente por poaceas y por su corta existencia, son difíciles de examinar; y el banco de semillas persistente, que es aquella fracción que permanece por más de 1 año enterrado y viable, principalmente en los horizontes más profundos (> 5 cm), cambia poco de estación a estación y por lo tanto, se le puede examinar.

2.2.6. Métodos para analizar el banco de semillas del suelo

De acuerdo a Thompson *et al.* (1997) citados por Piudo y Cavero (2005) se puede hablar de tres métodos para analizar el banco de semillas del suelo: método de extracción tras lavados y tamizados, método de germinación y método de enterramiento. El primero consiste en

reducir el volumen de la muestra empleando un tamiz para su posterior procesado con una lupa binocular. El tamiz más pequeño que se ha usado y demostrado su efectividad es el de 0,212 mm. Los lavados pueden realizarse con agua o con un agente desagregante de suelo, como el hexametafosfato de sodio (NaPO₃).

El método de germinación se basa en la emergencia de plántulas y puede realizarse en condiciones controladas (invernadero o cámara de crecimiento), o en campo. Bajo condiciones controladas y para favorecer la germinación de todas las semillas, se extiende la muestra de suelo homogéneamente sobre un substrato estéril; se riega periódicamente y se espera a la aparición de las plántulas. Éstas deben extraerse tan pronto como sea posible para evitar fenómenos de competencia entre especies y favorecer la germinación del resto de semillas (Piudo y Cavero, 2005).

El tercer método, que se encuentra muy en desuso, consiste en enterrar en campo las muestras de suelo a una profundidad conocida a la espera de la germinación de las semillas (Piudo y Cavero, 2005).

2.2.7. Frecuencia de especies

De acuerdo a Balbinot *et al.* (2016), la frecuencia expresa la uniformidad de la distribución horizontal de cada especie en el campo, caracterizando su ocurrencia dentro de las parcelas. Solamente se compara la frecuencia cuando las muestras son del mismo tamaño. Es posible analizar la frecuencia de dos maneras: de forma absoluta y de forma relativa.

2.2.8. Densidad de especies

Es la medida que obedece al número de individuos de una determinada especie por unidad de superficie, en general, será en hectáreas. La densidad relativa corresponde al porcentaje de individuos de una especie respecto al total de la muestra y depende de los registros de otras especies (Ramírez, 2006).

2.2.9. Abundancia de especies

Se refiere al porcentaje o número de individuos en una muestra de espacio y tiempo. Es dominante cuando más de dos por ciento del número total de individuos para un grupo específico, está constituido por una misma especie, de lo contrario es recedente (Briones *et al.*, 2001).

2.2.10. Índices de riqueza

Martins y Santos (1999) expresan que, los índices de riqueza estiman el número de especies presentes en una comunidad, sin tener en cuenta su estructura de abundancia. Se distinguen dos índices de riqueza: la riqueza específica numérica (o simplemente riqueza específica), que se refiere al número de especies presentes en una colección con un cierto número de individuos; mientras que, la riqueza de área específica (o densidad de especies), hace referencia al número de especies presentes en una determinada área o volumen.

2.2.11. Índices de diversidad

Los índices de diversidad consisten en una expresión matemática simple que involucra la abundancia relativa de cada especie en la muestra. Tal vez los dos índices más comunes son Shannon y Simpson. Combinan dos atributos de una comunidad biológica: el número de especies y su equitatividad. Este segundo componente se refiere a cómo las especies similares están representadas en la comunidad. Si todas las especies tienen la misma representatividad (o importancia) la equitatividad será máxima (Melo, 2008).

2.2.12. Índices de similitud

Llorente y Morrone (2001) mencionan que, los índices de similitud son una manera de medir la semejanza entre dos conjuntos de taxones, áreas o biotas. Se expresan mediante fórmulas. Si se concibe a una región geográfica como el conjunto de taxones que habitan en ella, entonces un índice de similitud permite medir la semejanza entre dos regiones o áreas geográficas en términos de los taxones que contienen. En general, todos siguen el criterio de que entre mayor sea el número de taxones en común entre dos áreas geográficas, mayor es su similitud.

2.2.13. Investigaciones relacionadas

Romero *et al.* (2016) caracterizaron el banco de semillas germinable (BSG) de tres coberturas: relicto de bosque, plantación de *Eucalyptus globulus* y pastizal, ubicadas en el municipio de San Bernardo en Cundinamarca, Colombia. En cada cobertura se trazaron tres transectos de 40 m, dispuestos cada 10 m en zig-zag con un ángulo de 45°. Se tomaron muestras de suelo por triplicado cada tres metros, con ayuda de un dispositivo Shelby de 3" a una profundidad de 15 cm. Las muestras de suelo se dispusieron en bandejas de germinación por un tiempo de seis meses bajo condiciones de invernadero. Las plántulas fueron contadas, removidas y luego se identificaron taxonómicamente. En el BSG del relicto de bosque se registraron 127343 plántulas/m² (46%); en la plantación, 44678 plántulas/m² (16%); y en el pastizal, 107747 plántulas/m² (38%). El índice de Shannon-Wiener indicó que, el sitio más diverso fue el relicto de bosque (2,71), seguido por pastizal (2,59) y plantación (2,52). El índice de Simpson presentó diferencia entre las unidades de cobertura; para el relicto de bosque (0,90), seguido por pastizal (0,88) y plantación (0,86). El índice de similitud de Bray-Curtis demostró que las unidades de cobertura de relicto de bosque y pastizal se relacionan en un 60% aproximadamente.

Obiafeno *et al.* (2017) evaluaron la composición y diversidad florística del BSS en vertederos de desechos sólidos ubicados en Port Harcourt, Nigeria. Se utilizó un muestreo sistemático en un área de 20 x 20 m. Se recogieron un total de 180 muestras de suelo de cinco vertederos, incluidos los controles, con 18 muestras de cada sitio durante una temporada, lo que representa 720 muestras de suelo durante todo el período de muestreo y se clasificaron de acuerdo con las profundidades de 0-5 cm, 5-10 cm y 10-15 cm. Las muestras de suelo se secaron al aire, tamizaron y luego se pesaron 100 g de muestra de suelo que se colocaron en maceteros plásticos. Éstas se regaron diariamente y la identificación de emergencia de las plántulas se realizó durante 12 semanas. La densidad de las plántulas en el BSS de los vertederos fue de 360,20 a 2960,02 semillas/m² en estaciones húmedas y de 427,76 a 5065,51 semillas/m² en estaciones secas. Los sitios de control obtuvieron valores entre 293,79 y 2357,29 semillas/m² y 411,53 a 1350,91 semillas/m² para las estaciones húmedas y secas, respectivamente. La mayor densidad de plántulas se registró a una profundidad de 0 a 5 cm (entre 173 y 2188 plántulas/m²); mientras que, a la profundidad de 10 a 15 cm se obtuvo la densidad más baja en la estación húmeda.

Butler y Chazdon (1998) analizaron la riqueza de especies, variación espacial y abundancia de plántulas provenientes del BSS de un bosque húmedo tropical secundario de 16 años localizado en la Estación Biológica La Selva, Costa Rica. Se colectaron muestras de suelo (173,50 cm³ de volumen) empleando un cilindro muestreador de acero inoxidable a una profundidad de 10 cm en puntos de intersección establecidos en un lote de 1 ha (121 muestras) y en un sublote incluido de 100 m² (36 muestras). Cada muestra de suelo se colocó en bandejas sobre 4 cm de arena de río esterilizada formando una capa delgada (> 1 cm). La emergencia de plántulas se controló cada 1 a 3 días durante un período de 10 semanas. La densidad promedio de semillas que se registró fue de 4535 semillas/m² y 5476 semillas/m² para las parcelas de 1 ha y 100 m², respectivamente. La densidad de semillas no difirió significativamente entre las dos parcelas (Mann-Whitney, p=0,16). La riqueza de especies calculada demostró que, en promedio, cada muestra del banco de semillas contenía 3,8 especies, independientemente de la parcela muestreada (prueba t de Student; p=0,94). En la parcela de 1 ha, el número de especies por muestra varió de 0 a 9; mientras que, en la parcela de 100 m², las muestras individuales contenían de 0 a 7 especies.

Caicedo *et al.* (2018) caracterizaron y compararon el BSG en dos tipos de vegetación (pastizal y bosque secundario) ubicados en los predios de la universidad Santo Tomás, Colombia. En cada tipo de vegetación, se tomaron 60 muestras (2100 cm³ c/u) de suelo a profundidades de 0-5 cm y 5-10 cm. Éstas se depositaron en bandejas formando una capa de 1 cm de suelo sobre 2 cm de sustrato de arena de rio y se colocaron en condiciones de invernadero. Durante 4 meses, cada 15 días, se contaron las plántulas germinadas y posteriormente se clasificaron a nivel de especie y habito de crecimiento. De acuerdo con los resultados obtenidos, no se encontraron diferencias significativas entre los BSG de los tipos de vegetación evaluados. Se contabilizaron en total 4057 individuos, pertenecientes a 16 familias, 26 géneros y 34 especies. Se registró la mayor abundancia en áreas de pastizal con 2288 individuos. El banco de semillas presentó dominancia de plantas herbáceas. El área de pastizal tuvo la mayor diversidad (H´= 2,2 bits) en comparación con el área de bosque. El análisis de agrupamiento (clúster) reflejó 2 grupos diferenciados por un valor de similitud de 51,23%, los cuales presentaron algunas diferencias, no significativas, en la composición y distribución de abundancias de las especies que conforman el BSG.

CAPÍTULO III METODOLOGÍA DE LA INVESTIGACIÓN

3.1. Materiales y métodos

3.1.1. Localización de la zona de estudio

La presente investigación se realizó en cinco sitios con plantaciones de teca, propiedad del grupo empresarial ENDESA-BOTROSA, ubicadas en los cantones de Santo Domingo (La Palma), provincia de Santo Domingo de los Tsáchilas; Valencia (Yurac Yacu y El Vergel) y Quevedo (San Carlos), provincia de Los Ríos; y Balzar (San Pedro), provincia del Guayas (Tabla 2 y Figura 1).

Tabla 2. Ubicación de las plantaciones de teca de 8, 9, 10 y 12 años.

Sitios	Cantón	Localiza Localiza	
Sitios	Canton	Este	Sur
La Palma	Santo Domingo	677263	9943201
Yurac Yacu	Valencia	693493	9924504
El Vergel	Valencia	684801	9914440
San Carlos	Quevedo	675827	9876492
San Pedro	Balzar	634285	9870643

Elaborado: Autor.

3.1.2. Límites

Los límites del cantón Santo Domingo son:

El área de estudio limita al Norte con la provincia de Esmeraldas y los cantones Puerto Quito y San Miguel de los Bancos, al Sur con las provincias de Los Ríos y Cotopaxi, al Este con los cantones Quito y Mejía, al Oeste con la provincia de Manabí.

Los límites del cantón Valencia son:

El área de estudio limita al Norte con la provincia de Santo Domingo de los Tsáchilas, al Sur con los cantones Quevedo y Quinsaloma, al Este con la provincia de Cotopaxi, al Oeste con el cantón Buena Fe.

Los límites del cantón Quevedo son:

El área de estudio limita al Norte con los cantones Buena Fe y Valencia, al Sur con el cantón Mocache, al Este con los cantones Quinsaloma y Ventanas, al Oeste con la provincia del Guayas.

Los límites del cantón Balzar son:

El área de estudio limita al Norte con el cantón El Empalme, al Sur con el cantón Colimes, al Este con la provincia de Los Ríos, al Oeste con la provincia de Manabí.

3.1.3. Características edafoclimáticas del cantón Santo Domingo

Altitud
Precipitación anual
Temperatura media anual
Humedad relativa media anual 87,8 %
Heliofanía anual
Zona de vida bh-T
Topografíairregular
Textura del suelo franco-arenoso
Fuente: Promedio de anuarios meteorológicos del INAMHI desde 1997 hasta 2013 (INAMHI, 2018); Zambrano (2015).

3.1.4. Características edafoclimáticas del cantón Valencia

Altitud	60 msnm
Precipitación anual	3166,3 mm
Temperatura media anual	. 24,1 °C
Humedad relativa media anual	. 89,5 %
Heliofanía anual	653,6 horas/luz
Zona de vida	. bh-T
Topografía	. irregular
Textura del suelo	franco

Fuente: Promedio de anuarios meteorológicos del INAHMHI desde 1997 hasta 2013 (INAMHI, 2018); Tapia (2013).

3.1.5. Características edafoclimáticas del cantón Quevedo

3.1.6. Características edafoclimáticas del cantón Balzar

Altitud	40 msnm
Precipitación anual	1821,0 mm
Temperatura media anual	26,1 °C
Humedad relativa media anual	81,6 %
Heliofanía anual	1100,0 horas/luz
Zona de vida	bs-T
Topografía	. irregular
Textura del suelo	arcilloso a arcillo-limoso
Fuente: Promedios de anuarios meteorológicos desde 1993 ha Marcillo (2014).	asta 2013 (INAMHI, 2018);

3.1.7. Materiales

Durante las diferentes fases del proyecto se emplearon varios materiales, herramientas, equipos e insumos, que fueron clasificados de forma general en materiales de campo, oficina y software:

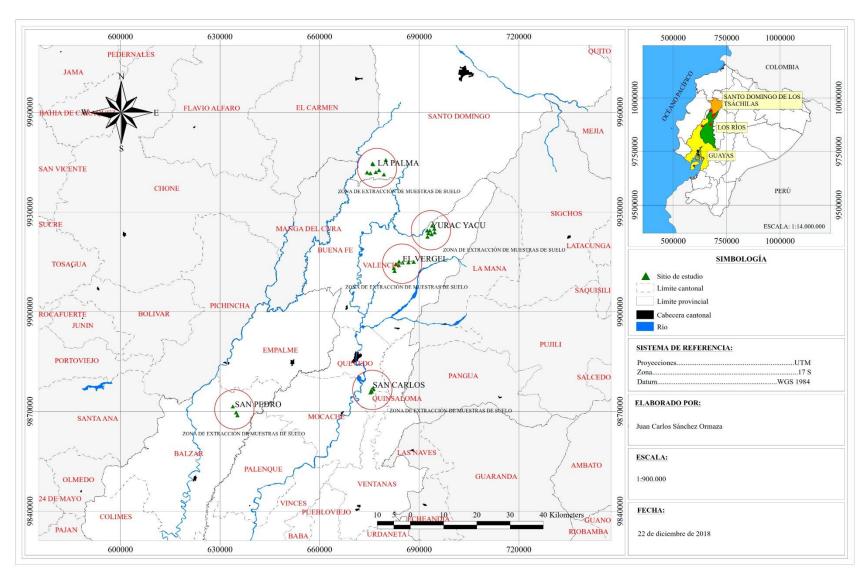


Figura 1. Mapa de ubicación de los sitios de estudio en la zona central del litoral ecuatoriano.

3.1.7.1. Materiales de campo

- Cilindro de metal de 4" de diámetro y 7 cm de alto
- Placa de metal de 14 x 11 cm
- Fundas ziploc de 16,6 x 14,9 cm
- Martillo combo de 1000 g
- Marcador permanente azul punta fina
- Cuaderno
- Libreta de campo
- Lápiz HB
- Brújula
- Receptor GPS Navegador
- Pilas AA
- Machete
- Botas
- Bandejas para germinación de 40 x 40 cm
- Vivero
- Mesas de caña
- Guantes de algodón para trabajo
- Tijeras
- Marcador permanente azul punta gruesa
- Jarra medidora de 500 ml
- Macetas de plástico
- Bomba de fumigar 20 litros
- Cámara fotográfica
- Tierra preparada esterilizada

3.1.7.2. Materiales de oficina

- Disco duro externo
- Ordenador
- Hojas A4
- Impresión
- Carpetas
- CD's

3.1.7.3. Software

- Paquete Microsoft (Word, Excel)
- ArcGIS 10.2
- AutoCAD 2010
- Past versión 2.17
- BioDiversity Pro 2.0
- Origin Pro 2017

3.2. Tipo de investigación

Se emplearon los métodos hipotético-deductivo y analítico. El método hipotético deductivo permitió observar el fenómeno estudiado, crear una hipótesis para explicar dicho fenómeno y verificar los resultados obtenidos comparándolos con otros resultados de investigaciones similares según la literatura.

Por otra parte, el método analítico tuvo como objetivo conocer a profundidad el objeto de estudio y sus características. Mediante la observación directa de plántulas durante su fase germinación y crecimiento, y posterior al cálculo de algunos parámetros para evaluar comunidades vegetales, se logró analizar y razonar los resultados que se obtuvieron en el trabajo de investigación.

3.3. Metodología

3.3.1. Trabajo de campo

3.3.1.1. Establecimiento de unidades de muestreo (UM)

Se establecieron 33 UM con forma cuadrada de 256 m² (16 x 16 m) de área. El área total de las UM en todos los sitios fue de 8448 m². El número de UM y su localización geográfica considerada para cada sitio de estudio se detalla en la siguiente tabla:

Tabla 3. Descripción y localización de las UM en plantaciones de teca de 8, 9, 10 y 12 años.

		Tamaño	Edad de		Localización	
Sitios	UM	de UM (m²)	plantación (años)	Este	Sur	Altitud (msnm)
	1	256	8	674224	9941936	167
	2	256	8	675236	9941711	186
	3	256	8	675910	9944643	197
I a Dalma	4	256	8	676111	9944372	199
La Palma -	1	256	10	679898	9945706	215
	2	256	10	677871	9942684	197
	3	256	10	679337	9941377	205
	4	256	10	676914	9942019	192
	1	256	8	693856	9925983	311
	2	256	8	694511	9925035	346
	3	256	8	693178	9924496	305
37 37	4	256	8	692396	9924493	286
Yurac Yacu -	1	256	10	693675	9923390	316
	2	256	10	694602	9923861	341
	3	256	10	692453	9922624	293
	4	256	10	692721	9923666	290
	1	256	8	682560	9912299	166
	2	256	8	682307	9913144	170
	3	256	8	683866	9915158	180
E1 37 1	4	256	8	682911	9914374	170
El Vergel -	1	256	10	686754	9914910	214
	2	256	10	684961	9914801	173
	3	256	10	683797	9914057	186
	4	256	10	688304	9915050	235
	1	256	9	676221	9876838	92
	2	256	9	676059	9877077	93
- C 1	1	256	12	675989	9876774	93
San Carlos	2	256	12	675665	9876696	96
	3	256	12	675698	9876096	89
	4	256	12	675248	9875793	96
	1	256	9	633827	9871533	50
San Pedro	2	256	9	634841	9869715	51
	3	256	9	635205	9868926	62
Total	33	8448				

Elaborado: Autor.

3.3.1.2. Muestreo del banco de semillas

3.3.1.2.1. Método de muestreo

Para el muestreo del banco de semillas se aplicó el método propuesto por Kalesnik *et al*. (2013) que consistió en colectar por cada UM cinco muestras de suelo (una por cada esquina y una en el centro, Figura 2). En las esquinas de la unidad de muestreo se procuró dejar un distanciamiento aproximado de 1 m siguiendo ambos lados del cuadrado a partir de su vértice de manera que permita simular una subunidad de muestreo (SM) de 1 m² en cuyo centro se realizó la extracción. Primero se realizó la recolección de muestras en las esquinas siguiendo un sentido horario y luego en el centro de la UM.

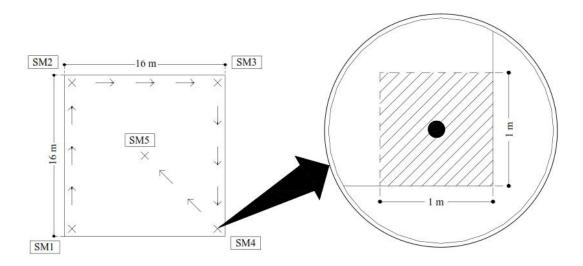
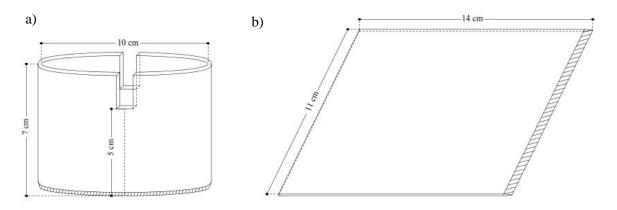



Figura 2. Ubicación de las subunidades de muestreo (SM) para colecta de muestras de suelo.

3.3.1.2.2. Recolección de muestras

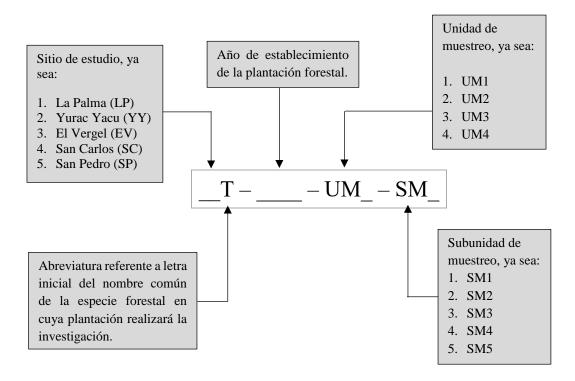
Para la recolección de cada muestra de suelo, se retiró la hojarasca, ramas, ramillas u otro material vegetal caído en el suelo sin alterar las especies vegetales presentes cerca de la zona a muestrear y, se insertó un cilindro de metal de 10 cm de diámetro y 7 cm de altura (Figura 3a) a una profundidad de 5 cm con la ayuda de un martillo combo. Se cavó a un costado del cilindro ya inserto para colocar una placa de metal rectangular de 14 x 11 cm (Figura 3b) en la parte inferior del mismo, para extraer la muestra intacta e inmediatamente se almacenó temporalmente en una bolsa de cierre hermético que se rotuló con la codificación correspondiente (Figura 4).

Las muestras de suelo que presentaron una alta compactación, se segregaron manualmente en forma cuidadosa a fin de reducir su volumen y facilitar su transporte. Además en cada SM, se tomaron puntos de coordenadas UTM con un Receptor GPS Navegador (donde también se registró la altura sobre el nivel del mar) y se llevó un registro fotográfico a fin de conocer la diversidad de arvenses presentes cerca del lugar de la extracción.

Figura 3. Dimensiones del cilindro (a) y placa de metal (b) para extraer de muestras de suelo.

3.3.1.2.3. Tamaño de la muestra

El número total de muestras de suelo recolectado en los cinco sitios de estudio fue de 165. El volumen de suelo aproximado que se recolectó por SM en un área de 78,54 cm² fue de 392,70 cm³, por UM en 392,70 cm² fue de 1963,50 cm³ y por sitios de estudio, varió entre 7854,00 cm³ (en 1570,8 cm²) y 23562,0 cm³ (en 4712,4 m²), sumando en un área total muestreada de 12959,10 cm² un volumen de suelo de 64795,50 cm³ (Tabla 4).


Tabla 4. Número y volumen total (cm³) de muestras de suelo recolectadas en plantaciones de teca.

Nombre del sitio	Número de SM	Área/SM (cm²)	Volumen/SM (cm³)	Área SM/Sitio (cm²)	Volumen SM/Sitio (cm³)
La Palma	40	78,54	392,70	3141,60	15708,00
Yurac Yacu	40	78,54	392,70	3141,60	15708,00
El Vergel	40	78,54	392,70	3141,60	15708,00
San Carlos	30	78,54	392,70	2356,20	11781,00
San Pedro	15	78,54	392,70	1178,10	5890,50
	7	Γotal	_	12959,10	64795,50

Elaborado: Autor.

3.3.1.2.4. Codificación de muestras

Debido al elevado número de muestras de suelo que se recolectaron en los sitios de estudio, se procedió a codificar cada muestra para su fácil identificación posterior, con información abreviada de: sitio de estudio, año de establecimiento de la plantación y, las siglas UM y SM para referirse a unidad y subunidad de muestreo, respectivamente (Figura 4).

Figura 4. Estructura de la codificación empleada para identificar las muestras colectadas de suelo en campo.

3.3.2. Trabajo de laboratorio

3.3.2.1. Diseño del vivero

Se construyó en un área de 85,50 m² un vivero tipo capilla con estructura de caña rolliza, cujes de guadua y una abertura de ventilación cenital en la cumbrera. Se cubrió de plástico amarillo (8 mils de calibre) con filtro UV para promover un aumento de temperatura e impedir la contaminación de las muestras. Sus dimensiones fueron de: 12,63 m de largo, 6,77 m de ancho, 2,20 m de altura bajo el canal, 3 m de altura al zenit, 3,66 m de separación entre pilares laterales y 3,28 m de separación entre pilares frontales (Figura 5).

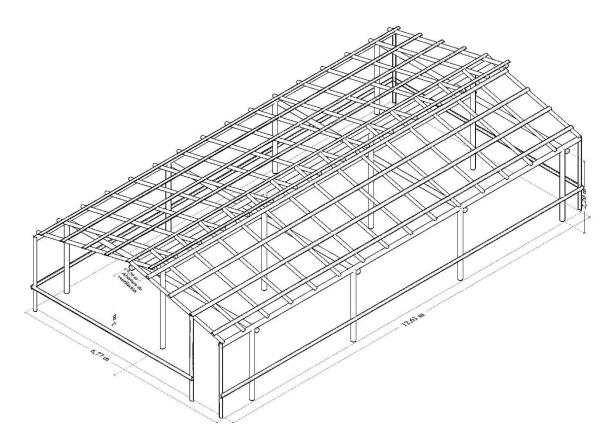


Figura 5. Infraestructura general del vivero.

El vivero contó con siete áreas: área de germinación (43,26 m²); área de crecimiento (16,02 m²); área de cobertizo (3,86 m²); área de preparación de bandejas y macetas (3,86 m²); área de depósito de herramientas, equipos e insumos (3,86 m²); área de entrada y camino principal (13,84 m²); y área privada (0,80 m²) (Figura 7).

3.3.2.2. Preparación de muestras en bandejas germinadoras

Para caracterizar el banco de semillas de arvenses se aplicó el método indirecto de emergencia de semillas propuesto por Ter *et al.* (1996) que consistió primeramente en pasar cada muestra recolectada en campo por un tamiz con un ancho de malla de 5 mm para retirar tubérculos, raíces, rizomas y material rocoso, si existiesen, para obtener una mejor concentración de semillas en menor cantidad de volumen de suelo.

Las muestras tamizadas fueron extendidas en bandejas de germinadoras de madera de 40 x 40 cm y 5 cm alto (Figura 5). Cada bandeja estuvo subdividida en cuatro secciones de 20 x 20 cm. Se depositó cada muestra (que representa una SM) en un segmento de la bandeja para

formar una capa de un espesor igual o inferior a 1 cm, según lo recomiendan Yang y Li (2013), para acelerar el proceso de germinación de semillas en condiciones de invernadero.

En cada sección de la bandeja se incluyó una ficha descriptiva con información referente a: código, fecha de recolección, coordenadas (UTM), zona y altitud (msnm).

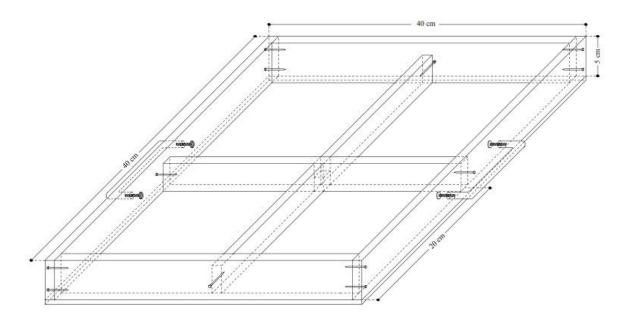
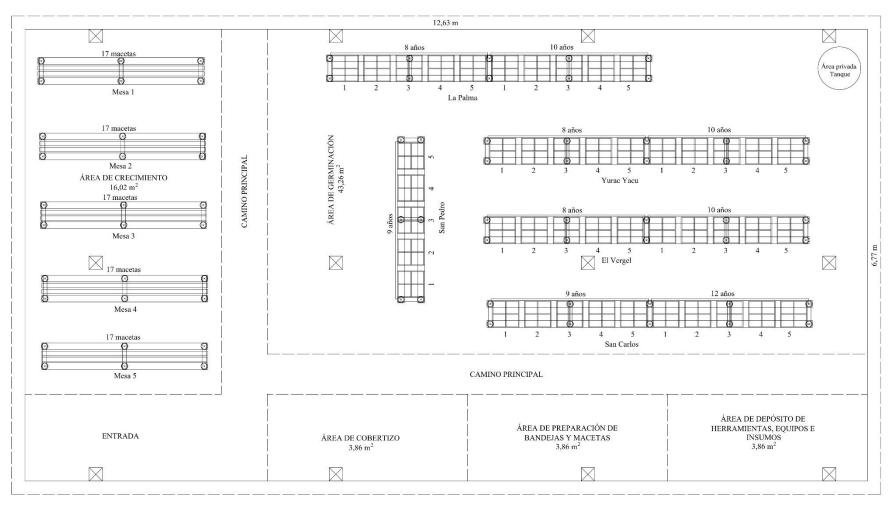



Figura 6. Bandeja para germinación de arvenses en muestras de suelo.

3.3.2.3. Distribución de bandejas germinadoras en el área de germinación

Las bandejas germinadoras se ubicaron sobre mesas de caña guadua a una altura de 80 cm sobre el nivel del suelo, manteniendo un espaciamiento entre mesas de 75 cm. La cantidad de bandejas a colocar en cada mesa varió de acuerdo al número total de SM consideradas por sitio de estudio, de manera que, las dimensiones del largo de las mesas no fue el mismo. Por otra parte, las bandejas se organizaron en cada mesa conforme a la edad de la plantación en forma ascendente (Figura 7).

A cada mesa se le colocó una o más fichas con una descripción general de la plantación que incluyó información acerca de: plantación , área (ha), provincia, cantón, parroquia, sector, coordenadas (UTM), zona, altitud (msnm), autor, director, y año.

Figura 7. Distribución de bandejas de germinación con muestras de suelo provenientes de plantaciones de teca localizadas en varios cantones de la zona central del litoral ecuatoriano, año 2019.

3.3.2.4. Manejo de plántulas

Las muestras se mantuvieron bajo condiciones de invernadero a 30 ± 25 °C de temperatura, 76 ± 20 % de humedad relativa y, se aplicó riego diario en modo de pulverización (650 ml por bandeja) con una bomba de fumigar manual con boquilla de cono regulable a primeras horas de la mañana (entre 06H00 y 07H00) y a la puesta de sol (a partir de las 18H30).

3.3.2.5. Identificación de plántulas

En primera instancia, se realizó el conteo y eliminación de las especies en estado de plántula sobre la superficie del sedimento de las muestras de suelo, hasta que éstas alcanzaron un estado vegetativo en que fueron factibles de clasificar, según lo manifiestan Cardenal *et al.* (2016); dejando pocos individuos que se extrajeron y etiquetaron momentáneamente con la denominación "E" seguido de una numeración en orden ascendente, según sea E1, E2, E3,...etc. para observar sus características morfológicas y mediante registro fotográfico se efectuaron comparaciones con la descripción disponible en bibliografía específica como claves de referencia, guías, manuales, u otro medio físico o digital ilustrado, que permitió su identificación taxonómica hasta el nivel de género y/o especie.

Las plántulas no identificadas se transfirieron a maceteros plásticos y dejaron crecer hasta observar su desarrollo completo (floración y fructificación) como lo recomiendan Hussain *et al.* (2017); y en caso de no ser posible su identificación por este medio, se nombró a la especie en forma definitiva como "Indeterminada 1", "Indeterminada 2", "Indeterminada 3",...etc. Las especies se identificaron de acuerdo al sistema de clasificación Angiosperm Phylogeny Group III (APG III, 2009).

La preparación de cada maceta consistió en agregar como sustrato de fondo arena esterilizada con espesor de 3 cm y sobre ésta, tierra preparada desinfectada a razón de 200 g y luego se procedió a efectuar el repicado de la plántula. Se aplicó riego dos veces al día.

Cada maceta fue identificada con una ficha descriptiva en la que se rotuló: nombre científico; nombre común; familia; origen; forma de dispersión y propagación de semillas; ciclo de vida; forma de vida; forma de hoja y fecha de emergencia; conforme a los caracteres de clasificación detallados más adelante.

3.3.3. Tratamiento de los datos

3.3.3.1. Densidad del banco de semillas

Se estimó la densidad del banco de semillas por cada sitio de estudio y edad de la plantación, como el número de semillas germinables por unidad de área (semillas.UM⁻¹ y semillas.ha⁻¹), según el principio de regla de tres.

3.3.3.1.1. Densidad por UM (semillas.UM⁻¹)

Se obtuvo relacionando el producto del número de semillas por SM y el área de la UM (256 m²) con el área total de la SM (0,03927 m²) conforme a la expresión:

$$semillas.UM^{-1} = \frac{N^{\circ} \text{ de semillas } (SM)x \text{ Área de UM } (m^{2})}{\text{Área total de SM } (m^{2})}$$
 (Ecuación 1)

3.3.3.1.2. Densidad total por ha (semillas.ha⁻¹)

Este valor se calculó dividiendo el producto del número de semillas por UM y el área de 1 ha (10000 m²) con el área de la UM (256 m²) como se muestra a continuación:

semillas.ha⁻¹ =
$$\frac{N^{\circ} \text{ de semillas } (UM)x \text{ 1 ha } (m^2)}{\text{Área de UM } (m^2)}$$
 (Ecuación 2)

3.3.3.2. Composición del banco de semillas

Para determinar la composición del banco de semillas, las especies fueron clasificadas por familia y luego se agruparon en función de su origen, dispersión, ciclo de vida, propagación, forma de vida y tipo de planta, como se expone en la siguiente tabla:

Tabla 5. Caracteres de clasificación de especies en el banco de semillas.

Carácter	Clasificación	Abreviatura
	Exótica	Ex
Origen	Nativa	Nv
	Indeterminada	Ind
	Anemocoria (viento)	A
	Autocoria (gravedad)	Au
Dispossión	Hidrocoria (agua)	Н
Dispersión	Hemerocoria (antrópico)	Hm
	Zoocoria (animal)	Z
	Indeterminada	Ind
	Anual	An
Ciclo de vida	Perenne	P
	Indeterminada	Ind
	Semilla	S
Propagación	Vegetativa	V
	Indeterminada	Ind
	Árbol	Ar
	Arbusto	Arb
Forma de vida	Hierba	Hi
Forma de vida	Helecho	He
	Trepadora	Tr
	Indeterminada	Ind
	Dicotiledónea	D
Tipo de planta	Monocotiledónea	M
	Indeterminada	Ind

Elaborado: Autor.

Fuente: Muñoz et al. (2016); Díaz et al. (2016).

Cabe mencionar que, esta información fue obtenida mediante el uso de la bibliografía específica mencionada en el apartado "identificación de plántulas" y de fuentes adicionales.

3.3.3.3. Evaluación de la estructura vegetal

Para la estimación de la estructura vegetal de las especies presentes en el banco de semillas en el suelo, se evaluaron los parámetros fitosociológicos de frecuencia absoluta (F_i), frecuencia relativa (FR_i), densidad absoluta (D_i), densidad relativa (DR_i), abundancia absoluta (A_i), abundancia relativa (AR_i) y el índice de valor de importancia (IVI) (Muller-Dombois y Ellemberg, 1974 citados por Ribeiro *et al.*, 2016).

3.3.3.1. Frecuencia absoluta (F_i)

Hace referencia al número de unidades de muestreo en que determinada especie se presenta en relación al número total de unidades de muestreo observadas (Imaña *et al.*, 2014). Se calculó empleando la siguiente expresión:

$$F_{i} = \left(\frac{P_{i}}{NS}\right)$$
 (Ecuación 3)

Donde:

F = frecuencia absoluta;

P_i = número de unidades de muestreo en el que está presente la especie i;

NS = número total de unidades de muestreo utilizadas.

3.3.3.2. Frecuencia relativa (FR_i)

Según Chaves *et al.* (2013), se obtiene de la relación entre la frecuencia absoluta de cada especie y la suma de las frecuencias absolutas de todas las especies muestreadas utilizando la siguiente fórmula:

$$FR_{i} = \left(\frac{F_{i}}{\sum F_{i}}\right) \times 100$$
 (Ecuación 4)

Donde:

FR_i = frecuencia relativa en porcentaje;

FA_i = frecuencia absoluta de la especie i;

 $\sum F_i$ = sumatoria de las frecuencias absolutas de todas las especies.

3.3.3.3. Densidad absoluta (D_i)

Este parámetro representa el número total de individuos de una determinada especie en un área/volumen total muestreado (Freitas y Magalhães, 2012). Para su cálculo se aplicó la siguiente fórmula:

$$D_{i} = \frac{N_{i}}{E}$$
 (Ecuación 5)

Donde:

D_i = densidad absoluta;

N_i = número total de individuos de la especie i;

E = área total de muestreo en hectáreas.

3.3.3.4. Densidad relativa (DR_i)

Se define como la relación entre el número de individuos de una especie y el número de individuos de todas las especies (Fernandes *et al.*, 2014). Se expresa en porcentaje como se muestra en la siguiente expresión:

$$DR_{i} = \left(\frac{D_{i}}{\sum D_{i}}\right) \times 100$$
 (Ecuación 6)

Donde:

DR_i = densidad relativa en porcentaje;

D_i = densidad absoluta de la especie i;

 $\sum D_i$ = sumatoria de las densidades absolutas de todas las especies.

3.3.3.5. Abundancia absoluta (A_i)

Representa la relación entre el número total de individuos de una especie y el número total de unidades de muestreo que contienen dicha especie (Santos *et al.*, 2017). Se obtuvo empleando la siguiente ecuación:

$$A_{i} = \frac{N_{i}}{NS_{i}}$$
 (Ecuación 7)

Donde:

A_i = abundancia absoluta;

N_i = número total de individuos de la especie i;

NS_i = número total de unidades de muestreo en que está presente la especie i.

3.3.3.6. Abundancia relativa (AR_i)

De acuerdo a Santos *et al.* (2015a), expresa en porcentaje la relación entre la abundancia absoluta de determinada especie y la sumatoria de las abundancias absolutas de todas las especies. Para su cálculo se utilizó la siguiente fórmula:

$$AR_{i} = \left(\frac{A_{i}}{\sum A_{i}}\right) \times 100$$
 (Ecuación 8)

Donde:

AR_i = abundancia relativa en porcentaje;

A_i = abundancia absoluta de la especie i;

 $\sum A_i$ = sumatoria de las abundancias absolutas de todas las especies.

3.3.3.7. Índice de valor de importancia (IVI)

Este índice se empleó para jerarquizar la dominancia de cada especie; consiste en la suma de los valores relativos de frecuencia, densidad y abundancia por especie, a partir de la expresión (Zarco *et al.*, 2010):

$$IVI = FR_i + DR_i + AR_i$$
 (Ecuación 9)

Donde:

IVI = índice de valor de importancia;

FR_i = frecuencia relativa de la especie i;

DR_i = densidad relativa de la especie i;

AR_i = abundancia relativa de la especie i.

En este sentido, cuando mayores sean lo valores de frecuencia, densidad y abundancia, más importancia tendrá una especie dentro del complejo florístico del área (Queiroz *et al.*, 2017).

3.3.4. Evaluación de la diversidad

Para el análisis de diversidad alfa se emplearon los índices de riqueza (Margalef, D_{Mg}), equitatividad (Pielou, J') y diversidad (Shannon-Weaver, H'; Simpson, S) que fueron calculados con los datos de abundancia de las especies identificadas en el banco de semillas; y la diversidad beta, se calculó a través del índice de similitud/disimilitud de Jaccard (I_J) (Velázquez *et al.*, 2008) que se esquematizó con un análisis de conglomerados (clúster). Los valores de estos índices fueron obtenidos con la ayuda de los programas Past 2.17 y BioDiversity Pro 2.0.

3.3.4.1. Índice de riqueza de Margalef (D_{Mg})

Es un índice simple, que permite estimar la diversidad en base a la distribución numérica de los individuos de las diferentes especies (Kanieski *et al.*, 2010). Considera solamente el número de especies y el logaritmo natural del número total de individuos (Rodrigues, 2015). Se calculó a través de la siguiente ecuación:

$$D_{Mg} = \frac{(S-1)}{\ln(N)}$$
 (Ecuación 10)

Donde:

D_{Mg} = índice de Margalef;

S = número de especies presentes;

ln = logaritmo natural;

N = número total de individuos de todas las especies.

Los resultados se interpretaron empleando la siguiente escala de significancia:

Tabla 6. Escala para la interpretación de resultados del índice de Margalef (D_{Mg}).

Valores	Interpretación
0 - 2,0	Riqueza baja
2,1-5,0	Riqueza media
> 5,0	Riqueza alta

Elaborado: Autor.

Fuente: Otálvaro y Barrera (2017).

3.3.4.2. Índice de equitatividad de Pielou (J')

Según Biondi y Bobrowski (2014), este índice mide la proporción de la diversidad observada en relación a la máxima diversidad esperada y es obtenido por la siguiente ecuación:

$$J' = \frac{H'}{H'_{max}}$$
 (Ecuación 11)

Siendo:

$$H'_{max} = ln(S)$$

Donde:

J'= índice de Pielou;

H'= índice de Shannon-Wiever;

H_{max} = diversidad máxima;

ln = logaritmo natural;

S = número total de especies muestreadas.

Los resultados se interpretaron empleando la siguiente escala de significancia:

Tabla 7. Escala para la interpretación de resultados del índice de Pielou (J').

Valores	Interpretación	
0 - 0,33	Equitatividad baja (heterogéneo en abundancia)	
0,34 - 0,66	Equitatividad media (ligeramente heterogéneo en abundancia)	
> 0,67	Equitatividad alta (homogéneo en abundancia)	

Elaborado: Autor. Fuente: Aguirre (2013).

3.3.3.4.3. Índice de diversidad Shannon-Weaver (H')

Mide el grado medio de incertidumbre para predecir la especie a la que pertenecería un individuo escogido al azar dentro de las unidades de muestreo y se define como la suma de los productos de la abundancia de cada especie por el logaritmo de dicha abundancia, dado por la siguiente fórmula (Barreto *et al.*, 2018; Carabia *et al.*, 2009):

$$H' = -\sum p_i \ln(p_i)$$
 (Ecuación 12)

Siendo:

$$p_i = \frac{n_i}{N}$$

Dónde:

H' = índice de Shannon-Weaver;

p_i = proporción de individuos de la especie i respecto al total de individuos (abundancia relativa de la especie i);

ln = logaritmo natural;

n_i = número de individuos de la especie i;

N = número total de individuos de todas las especies.

Los resultados se interpretaron empleando la siguiente escala de significancia:

Tabla 8. Escala para la interpretación de resultados del índice de Shannon-Wiever (H').

Valores	Interpretación
0 – 1,35	Diversidad baja
1,36 – 3,5	Diversidad media
> 3,5	Diversidad alta

Elaborado: Autor.

Fuente: Aguirre (2013).

3.3.3.4.4. Índice de diversidad de Simpson (S)

Este índice considera la probabilidad de que dos individuos escogidos aleatoriamente dentro de las unidades de muestreo pertenezcan a la misma especie, indicando la relación existente entre riqueza o número de especies y la abundancia o número de individuos por especie, representándose como (Juárez *et al.*, 2016; Campo y Duval, 2014):

$$S = 1 - \sum p_i^2$$
 (Ecuación 13)

Siendo:

$$pi^2 = \left(\frac{n_i}{N}\right)^2$$

Dónde:

S = índice de Simpson;

 p_i^2 = cuadrado de la proporción de individuos de la especie i respecto al total de individuos (abundancia relativa de la especie i);

n; = número de individuos de la especie i;

N = número total de individuos de todas las especies.

Los resultados se interpretaron empleando la siguiente escala de significancia:

Tabla 9. Escala para la interpretación de resultados del índice de Simpson (S).

Valores	Interpretación
0 - 0,33	Diversidad baja
0,34 - 0,66	Diversidad media
> 0,67	Diversidad alta

Elaborado: Autor. Fuente: Aguirre (2013).

3.3.3.4.5. Índice de similitud de Jaccard (I_J)

Es un coeficiente binario (utiliza datos de presencia/ausencia) que relaciona el número de especies comunes y el número total de especies muestreadas cuando se comparan dos o más comunidades, de acuerdo con la siguiente fórmula (Luna *et al.*, 2018):

$$I_{J} = \left(\frac{c}{a+b+c}\right) \times 100$$
 (Ecuación 14)

Donde:

I_J = índice de similaridad de Jaccard;

a = número de especies presentes en el sitio a;

b = número de especies presentes en el sitio b;

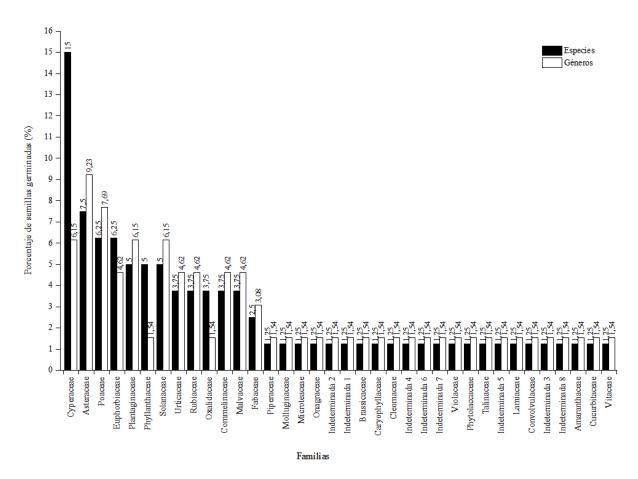
c = número de especies presentes en ambos sitios A y B, es decir, están compartidas.

Tabla 10. Escala para la interpretación de resultados del índice de Jaccard (I_J).

Valores	Interpretación
0 - 0,33	No parecido (disímil o diferente florísticamente)
0,34 - 0,66	Medianamente parecido (medianamente disímil florísticamente)
0,67 - 1	Muy parecido (Similar florísticamente)

Elaborado: Autor. Fuente: Aguirre (2013).

3.3.3.5. Análisis estadístico


Para determinar la existencia de diferencias significativas en los datos de abundancia por número de individuos entre los sitios de estudio, se aplicó un análisis de varianza univariante (p<0,05) y comparaciones múltiples de Tukey. Esta información fue procesada en el programa Past 2.17.

CAPÍTULO IV RESULTADOS Y DISCUSIÓN

4.1. Densidad y composición del banco de semillas de arvenses en plantaciones de teca de la zona central del litoral ecuatoriano

4.1.1. Familias botánicas presentes en el banco de semillas

En el inventario efectuado al banco de semillas de arvenses en plantaciones forestales de teca para los sitios La Palma, Yurac Yacu, El Vergel, San Carlos y San Pedro se determinó un total de 65 géneros y 80 especies (entre definidas e indeterminadas) con un número de semillas germinadas de 23041 plantas, de las cuales, las familias que presentaron la mayor abundancia fueron Cyperaceae con 8223 individuos, Plantaginaceae con 6149 individuos, Piperaceae con 1684 individuos, Molluginaceae con 1348 individuos y Urticaceae con 1316 individuos. Por otra parte, las familias menos abundantes fueron Amaranthaceae, Cucurbitaceae y Vitaceae, con 1 individuo por cada una.

Figura 8. Diagrama de proporción de especies y géneros agrupados por familias del banco de semillas de arvenses en plantaciones forestales de teca de las zona central del litoral ecuatoriano, año 2019.

En referencia a la proporción de géneros y especies registrados por familias, se reportó un mayor porcentaje para Cyperaceae (12 especies y 4 géneros); seguido de Asteraceae (6 especies y 6 géneros); Poaceae (5 especies y 5 géneros); Euphorbiaceae (5 especies y 3 géneros); Plantaginaceae (4 especies y 4 géneros); Solanaceae (4 especies y 4 géneros), Phyllanthaceae (4 especies y 1 género); Commelinaceae, Malvaceae, Rubiaceae y Urticaceae (3 géneros y 3 especies); Oxalidaceae (3 especies y 1 género); y Fabaceae (2 especies y 2 géneros). El resto de las familias expresaron valores de 1,25% de especies y 1,54% de géneros (Figura 8).

4.1.2. Presencia y ausencia

Considerando un total de 33 UM establecidas en todos los sitios de estudio, las especies que revelaron una mayor presencia fueron *Veronica persica* Poir. (33 UM), *Peperomia pellucida* (L.) Kunth (32 UM), *Laportea aestuans* (L.) Chew (28 UM), *Microtea debilis* Sw. (24 UM), *Panicum trichoides* Sw. (22 UM), *Mitracarpus hirtus* (L.) DC. (22 UM), *Phyllanthus urinaria* L. (21 UM), *Mecardonia procumbens* (Mill.) Small (21 UM), *Acalypha arvensis* Poepp. (19 UM), *Euphorbia graminea* Jacq. (18 UM), *Scirpus* sp. (17 UM) y *Solanum americanum* Mill. (17 UM). Mientras que, aquellas que reflejaron menor presencia equivalente a 1 UM fueron 20 especies entre las que destacan *Momordica charantia* L., *Euphorbia hirta* L., *Ochroma pyramidale* (Cav. ex Lam.) Urb., *Phyllanthus niruri* L. y *Cissus verticillata* (L.) Nicolson & C.E.Jarvis (Tabla 11).

4.1.3. Densidad total del banco de semillas

Se observó que existe una mayor densidad de semillas en el suelo en plantaciones de 10 años para los sitios El Vergel (3,47 millones de semillas.UM⁻¹ y 135,41 millones de semillas.ha⁻¹), La Palma (2,99 millones de semillas.UM⁻¹ y 116,88 millones de semillas.ha⁻¹) y Yurac Yacu (9,86 millones de semillas.UM⁻¹ y 384,96 millones de semillas.ha⁻¹), especialmente en este último, donde el valor es muy considerable. En San Carlos sucedió lo contrario, la plantación de menor edad (9 años), registró la mayor densidad (7,79 millones de semillas.UM⁻¹ y 304,18 millones de semillas.ha⁻¹), ocasionado por el número no uniforme de UM consideradas en plantaciones de 12 años. Por otra parte, en San Pedro se calculó un valor de densidad (5,13 millones de semillas.UM⁻¹ y 200,32 millones de semillas.ha⁻¹) muy similar al de San Carlos (208,56 millones de semillas.ha⁻¹) para plantaciones de 12 años (Tabla 12).

Tabla 11. Presencia y ausencia de especies del banco de semillas del suelo en plantaciones forestales de teca de diferentes edades establecidas en La Palma, Yurac Yacu, El vergel, San Carlos y San Pedro, año 2019.

For: 11:	Especie	La P	alma	Yurac Yacu		El Vergel		San Carlos		San Pedro	a
Familia		8 años	10 años	8 años	10 años	8 años	10 años	9 años	12 años	9 años	Suma
Amaranthaceae	Achyranthes aspera L.	0	0	1	0	0	0	0	0	0	1
	Conyza canadensis (L.) Cronquist	0	0	0	0	0	1	0	0	0	1
	Cyanthillium cinereum (L.) H.Rob.	1	2	2	2	1	2	1	3	0	14
A	Dittrichia sp.	0	0	0	0	1	0	0	0	0	1
Asteraceae	Eleutheranthera ruderalis (Sw.) Sch.Bip.	0	0	0	0	3	0	0	4	3	10
	Emilia fosbergii Nicolson	0	0	1	2	0	1	0	0	0	4
	Galinsoga quadriradiata Ruiz & Pav.	0	1	0	0	0	0	0	0	0	1
Brassicaceae	Cardamine hirsuta L.	0	1	2	2	0	0	0	0	0	5
Caryophyllaceae	Drymaria cordata (L.) Willd. ex Schult.	0	1	3	4	3	4	0	0	0	15
Cleomaceae	Cleome aculeata L.	0	2	0	0	0	0	0	0	0	2
	Commelina erecta L.	0	0	0	0	0	0	0	1	0	1
Commelinaceae	Murdannia nudiflora (L.) Brenan	0	0	0	0	0	0	0	1	0	1
	Tripogandra serrulata (Vahl) Handlos	0	2	2	0	2	0	0	0	0	6
Convolvulaceae	Ipomoea grandifolia (Dammer) O'Donell	1	0	0	0	0	0	0	0	0	1
Cucurbitaceae	Momordica charantia L.	0	0	0	0	1	0	0	0	0	1
	Cyperus sp.	0	0	0	0	0	0	1	0	0	1
	Cyperus compressus L.	0	0	0	0	0	0	0	0	2	2
	Cyperus esculentus L.	4	4	0	0	0	0	2	4	0	14
	Cyperus iria L.	0	0	0	0	0	0	1	1	0	2
	Cyperus laevigatus L.	1	2	0	1	0	0	0	0	0	4
Cyperaceae	Cyperus odoratus L.	0	0	0	0	4	4	0	0	0	8
	Cyperus rotundus L.	3	3	0	0	1	1	0	0	0	8
	Cyperus sesquiflorus (Torr.) Mattf. & Kük.	1	2	0	2	0	1	1	0	0	7
	Fimbristylis dichotoma (L.) Vahl	2	1	4	4	0	0	0	0	0	11
	Fimbristylis littoralis Gaudich.	2	2	3	3	0	0	0	0	2	12
	Rhynchospora radicans (Schltdl. & Cham.)	2	3	2	1	0	0	0	0	0	8

(Continuación...)

D '11'	Especie	La P	alma	Yurac Yacu		El Vergel		San Carlos		San Pedro	G
Familia		8 años	10 años	8 años	10 años	8 años	10 años	9 años	12 años	9 años	Suma
	Scirpus sp.	1	1	1	3	2	0	2	4	3	17
	Acalypha arvensis Poepp.	2	2	4	4	1	4	0	0	2	19
	Acalypha setosa A.Rich.	4	4	0	0	3	2	0	0	1	14
Euphorbiaceae	Croton lobatus L.	0	1	0	0	0	0	0	0	0	1
	Euphorbia graminea Jacq.	4	3	1	1	2	4	1	2	0	18
	Euphorbia hirta L.	0	0	0	0	0	1	0	0	0	1
Eshanaa	Desmodium incanum DC.	1	0	2	0	1	0	0	0	0	4
Fabaceae	Rhynchosia minima (L.) DC.	0	0	0	0	0	0	0	0	1	1
Indeterminada 1	Indeterminada 1	0	0	0	0	3	2	0	0	0	5
Indeterminada 2	Indeterminada 2	0	2	4	4	2	3	0	0	0	15
Indeterminada 3	Indeterminada 3	0	0	0	0	0	1	0	0	0	1
Indeterminada 4	Indeterminada 4	0	0	2	3	1	1	0	0	0	7
Indeterminada 5	Indeterminada 5	0	2	0	0	0	0	0	0	0	2
Indeterminada 6	Indeterminada 6	0	0	0	0	0	0	0	0	2	2
Indeterminada 7	Indeterminada 7	0	0	0	0	0	0	0	0	2	2
Indeterminada 8	Indeterminada 8	0	0	0	0	0	0	0	0	1	1
Lamiaceae	Tectona grandis L.f.	0	0	0	0	0	0	0	1	2	3
	Abutilon pauciflorum A.StHil.	0	0	1	0	0	0	0	0	0	1
Malvaceae	Ochroma pyramidale (Cav. ex Lam.) Urb.	0	0	0	0	1	0	0	0	0	1
	Sida rhombifolia L.	0	0	1	0	0	0	0	0	0	1
Microteaceae	Microtea debilis Sw.	2	3	4	4	3	4	1	3	0	24
Molluginaceae	Mollugo verticillata L.	0	0	4	4	0	3	2	3	0	16
Onagraceae	Ludwigia octovalvis (Jacq.) P.H. Raven	1	0	4	4	2	2	1	2	0	16
	Oxalis corniculata L.	0	0	1	1	0	3	0	0	0	5
Oxalidaceae	Oxalis barrelieri L.	3	1	0	0	0	0	0	0	0	4
	Oxalis divaricata Mart. ex Zucc	0	0	0	0	0	0	2	1	1	4
	Phyllanthus amarus Schumach. & Thonn.	0	0	0	0	0	0	0	1	1	2
Phyllanthaceae	Phyllanthus maderaspatensis L.	1	0	2	2	1	0	0	2	0	8
	Phyllanthus niruri L.	0	0	1	0	0	0	0	0	0	1

46

Familia.	Especie -	La P	alma	Yurac Yacu		El Vergel		San Carlos		San Pedro	G
Familia		8 años	10 años	8 años	10 años	8 años	10 años	9 años	12 años	9 años	Suma
	Phyllanthus urinaria L.	3	3	4	4	3	4	0	0	0	21
Phytolaccaceae	Phytolacca rivinoides Kunth & C.D. Bouché	1	0	0	0	1	0	0	0	0	2
Piperaceae	Peperomia pellucida (L.) Kunth	4	4	4	4	4	4	2	3	3	32
	Mecardonia procumbens (Mill.) Small	2	2	2	2	3	2	2	3	3	21
Diantaginagas	Scoparia dulcis L.	0	0	0	0	0	0	0	0	3	3
Plantaginaceae	Stemodia verticillata (Mill.) Hassl.	1	2	3	1	1	0	2	3	3	16
	Veronica persica Poir.	4	4	4	4	4	4	2	4	3	33
	Dactyloctenium aegyptium (L.) Willd.	0	0	0	0	0	0	0	0	3	3
	Eleusine indica (L.) Gaertn.	0	0	2	3	0	0	0	0	3	8
Poaceae	Leptochloa filiformis (Pers.) P.Beauv.	0	0	0	0	0	0	0	0	1	1
	Panicum trichoides Sw.	4	2	3	4	4	4	0	0	1	22
	Rottboellia cochinchinensis (Lour.) Clayton	2	1	2	3	3	2	0	2	0	15
	Borreria latifolia (Aubl.). K. Schum	0	1	0	0	0	3	0	1	0	5
Rubiaceae	Mitracarpus hirtus (L.) DC.	3	4	2	2	3	1	2	2	3	22
	Spermacoce sp.	2	1	2	3	4	0	0	0	2	14
	Browallia americana L.	0	1	2	0	0	0	0	0	0	3
Solanaceae	Capsicum sp.	0	0	0	0	0	0	0	3	0	3
Solanaceae	Physalis angulata L.	0	0	0	0	0	0	0	0	2	2
	Solanum americanum Mill.	1	1	1	1	2	4	2	4	1	17
Talinaceae	Talinum paniculatum (Jacq.) Gaertn.	0	0	0	0	0	1	0	1	0	2
	Boehmeria sp.	0	2	0	0	0	0	0	0	0	2
Urticaceae	Laportea aestuans (L.) Chew	4	4	4	0	4	4	2	4	2	28
	Urtica urens L.	3	2	1	0	0	0	0	0	0	6
Violaceae	Hybanthus attenuatus (Humb. & Bonpl. ex Schult.) Schulze-Menz	0	0	0	0	0	0	1	3	1	5
Vitaceae	Cissus verticillata (L.) Nicolson & C.E.Jarvis	0	0	0	0	0	0	1	0	0	1

Elaborado: Autor.

Tabla 12. Densidad total del banco de semillas del suelo en plantaciones forestales de teca de la zona central del litoral ecuatoriano, año 2019.

Sitios	Edad de la plantación	Densidad total							
Sicios	(años)	semillas.UM ⁻¹ *	semillas.ha ⁻¹ *						
La Palma	8	1,40	54,88						
La Palma	10	2,99	116,88						
Yurac Yacu	8	4,31	168,32						
Turac Tacu	10	9,86	384,96						
El Vancel	8	2,44	95,49						
El Vergel	10	3,47	135,41						
Con Conton	9	7,79	304,18						
San Carlos	12	5,34	208,56						
San Pedro	9	5,13	200,32						

^{*} Valores expresados en millones.

Elaborado: Autor.

4.1.4. Densidad absoluta de semillas por especie

Los valores correspondientes a densidad absoluta de semillas por especie expresan en forma generalizada que, *Cyperus esculentus* L. fue la especie que obtuvo la cifra más alta correspondiente a 309,78 millones de semillas.ha⁻¹, un 30 a 63% más de lo calculado para *Mecardonia procumbens* (Mill.) Small (215,60 millones de semillas.ha⁻¹), *Veronica persica* Poir. (209,79 millones de semillas.ha⁻¹), *Scirpus* sp. (169,62 millones de semillas.ha⁻¹) y *Peperomia pellucida* (L.) Kunth (115,44 millones de semillas.ha⁻¹). Mientras que, valores inferiores de 0,06 millones de semillas.ha⁻¹ se obtuvieron para *Achyranthes aspera* L., *Conyza canadensis* (L.) Cronquist, *Dittrichia* sp., *Galinsoga quadriradiata* Ruiz & Pav., *Commelina erecta* L., *Murdannia nudiflora* (L.) Brenan, *Momordica charantia* L., *Ochroma pyramidale* (Cav. ex Lam.) Urb. y *Sida rhombifolia* L. (Tabla 13).

4.1.5. Composición del banco de semillas de arvenses

4.1.5.1. Origen

Los resultados de composición del BSS (Tabla 14) de acuerdo a su origen indicaron un mayor número de individuos de especies nativas (81,74%) en los sitios San Pedro con 2216 individuos (93,90%), El Vergel con 3170 individuos (87,40%) y La Palma con 2284 individuos (84,66%), a diferencia de aquellos de origen exótico (16,25%) que fue mucho

Tabla 13. Densidad absoluta (D_i) de especies del banco de semillas del suelo en plantaciones forestales de teca de la zona central del litoral ecuatoriano 2019.

E '1'	Especie	La F	Palma	Yurac Yacu		El Vergel		San Carlos		San Pedro	G
Familia		8 años*	10 años*	8 años*	10 años*	8 años*	10 años*	9 años*	12 años*	9 años*	Suma
Amaranthaceae	Achyranthes aspera L.	0,00	0,00	0,06	0,00	0,00	0,00	0,00	0,00	0,00	0,06
	Conyza canadensis (L.) Cronquist	0,00	0,00	0,00	0,00	0,00	0,06	0,00	0,00	0,00	0,06
	Cyanthillium cinereum (L.) H.Rob.	0,06	0,51	1,02	0,38	0,32	0,19	0,25	0,51	0,00	3,25
A	Dittrichia sp.	0,00	0,00	0,00	0,00	0,06	0,00	0,00	0,00	0,00	0,06
Asteraceae	Eleutheranthera ruderalis (Sw.) Sch.Bip.	0,00	0,00	0,00	0,00	0,83	0,00	0,00	6,62	0,93	8,38
	Emilia fosbergii Nicolson	0,00	0,00	0,13	1,59	0,00	0,13	0,00	0,00	0,00	1,85
	Galinsoga quadriradiata Ruiz & Pav.	0,00	0,06	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,06
Brassicaceae	Cardamine hirsuta L.	0,00	0,13	0,64	7,38	0,00	0,00	0,00	0,00	0,00	8,15
Caryophyllaceae	Drymaria cordata (L.) Willd. ex Schult.	0,00	0,32	1,02	3,31	1,53	0,89	0,00	0,00	0,00	7,07
Cleomaceae	Cleome aculeata L.	0,00	4,65	0,00	0,00	0,00	0,00	0,00	0,00	0,00	4,65
	Commelina erecta L.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,06	0,00	0,06
Commelinaceae	Murdannia nudiflora (L.) Brenan	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,06	0,00	0,06
	Tripogandra serrulata (Vahl) Handlos	0,00	0,25	0,19	0,00	1,66	0,00	0,00	0,00	0,00	2,10
Convolvulaceae	Ipomoea grandifolia (Dammer) O'Donell	0,13	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,13
Cucurbitaceae	Momordica charantia L.	0,00	0,00	0,00	0,00	0,06	0,00	0,00	0,00	0,00	0,06
	Cyperus sp.	0,00	0,00	0,00	0,00	0,00	0,00	0,13	0,00	0,00	0,13
	Cyperus compressus L.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,17	0,17
	Cyperus esculentus L.	17,00	12,22	0,00	0,00	0,00	0,00	196,46	84,10	0,00	309,78
	Cyperus iria L.	0,00	0,00	0,00	0,00	0,00	0,00	0,25	0,45	0,00	0,70
	Cyperus laevigatus L.	0,13	1,53	0,00	0,25	0,00	0,00	0,00	0,00	0,00	1,91
Crimanaaaaa	Cyperus odoratus L.	0,00	0,00	0,00	0,00	11,33	46,35	0,00	0,00	0,00	57,68
Cyperaceae	Cyperus rotundus L.	7,13	3,25	0,00	0,00	0,19	0,06	0,00	0,00	0,00	10,63
	Cyperus sesquiflorus (Torr.) Mattf. & Kük.	0,06	0,25	0,00	0,19	0,00	0,06	1,66	0,00	0,00	2,23
	Fimbristylis dichotoma (L.) Vahl	0,19	0,76	23,68	46,28	0,00	0,00	0,00	0,00	0,00	70,92
	Fimbristylis littoralis Gaudich.	0,45	14,45	6,24	10,44	0,00	0,00	0,00	0,00	5,18	36,75
	Rhynchospora radicans (Schltdl. & Cham.)	0,57	1,46	3,88	0,06	0,00	0,00	0,00	0,00	0,00	5,98
	Scirpus sp.	0,13	0,06	0,57	0,32	0,13	0,00	7,13	5,86	155,42	169,62

(Continuación...) 49

T '11'	T	La Palma		Yura	c Yacu	El V	ergel	San Carlos		San Pedro	C
Familia	Especie	8 años*	10 años*	8 años*	10 años*	8 años*	10 años*	9 años*	12 años*	9 años*	Suma
	Acalypha arvensis Poepp.	0,70	0,25	8,47	11,27	0,06	4,27	0,00	0,00	0,25	25,27
	Acalypha setosa A.Rich.	0,89	2,67	0,00	0,00	1,02	0,32	0,00	0,00	0,08	4,99
Euphorbiaceae	Croton lobatus L.	0,00	0,32	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,32
	Euphorbia graminea Jacq.	0,89	1,27	0,32	0,25	0,25	0,89	0,13	0,19	0,00	4,20
	Euphorbia hirta L.	0,00	0,00	0,00	0,00	0,00	0,13	0,00	0,00	0,00	0,13
Eshana	Desmodium incanum DC.	0,06	0,00	0,13	0,00	0,06	0,00	0,00	0,00	0,00	0,25
Fabaceae	Rhynchosia minima (L.) DC.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,08	0,08
Indeterminada 1	Indeterminada 1	0,00	0,00	0,00	0,00	6,30	2,04	0,00	0,00	0,00	8,34
Indeterminada 2	Indeterminada 2	0,00	0,83	1,85	10,12	0,76	2,23	0,00	0,00	0,00	15,79
Indeterminada 3	Indeterminada 3	0,00	0,00	0,00	0,00	0,00	0,13	0,00	0,00	0,00	0,13
Indeterminada 4	Indeterminada 4	0,00	0,00	0,57	0,32	0,32	0,45	0,00	0,00	0,00	1,66
Indeterminada 5	Indeterminada 5	0,00	0,57	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,57
Indeterminada 6	Indeterminada 6	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,95	1,95
Indeterminada 7	Indeterminada 7	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,78	1,78
Indeterminada 8	Indeterminada 8	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,17	0,17
Lamiaceae	Tectona grandis L.f.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,06	0,25	0,32
	Abutilon pauciflorum A.StHil.	0,00	0,00	0,45	0,00	0,00	0,00	0,00	0,00	0,00	0,45
Malvaceae	Ochroma pyramidale (Cav. ex Lam.) Urb.	0,00	0,00	0,00	0,00	0,06	0,00	0,00	0,00	0,00	0,06
	Sida rhombifolia L.	0,00	0,00	0,06	0,00	0,00	0,00	0,00	0,00	0,00	0,06
Microteaceae	Microtea debilis Sw.	1,27	10,12	4,14	26,99	4,77	3,31	1,27	8,72	0,00	60,61
Molluginaceae	Mollugo verticillata L.	0,00	0,00	33,61	38,52	0,00	11,78	1,78	1,02	0,00	86,71
Onagraceae	Ludwigia octovalvis (Jacq.) P.H. Raven	0,06	0,00	2,10	12,73	0,76	1,08	0,64	0,45	0,00	17,83
	Oxalis corniculata L.	0,00	0,00	0,89	1,08	0,00	0,19	0,00	0,00	0,00	2,16
Oxalidaceae	Oxalis barrelieri L.	1,46	0,51	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,97
	Oxalis divaricata Mart. ex Zucc	0,00	0,00	0,00	0,00	0,00	0,00	1,66	2,74	0,08	4,48
	Phyllanthus amarus Schumach. & Thonn.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,06	0,08	0,15
Phyllanthaceae I	Phyllanthus maderaspatensis L.	0,13	0,00	0,45	1,40	0,06	0,00	0,00	1,40	0,00	3,44
	Phyllanthus niruri L.	0,00	0,00	0,32	0,00	0,00	0,00	0,00	0,00	0,00	0,32
	Phyllanthus urinaria L.	1,78	0,95	5,98	4,14	1,08	4,46	0,00	0,00	0,00	18,40

50

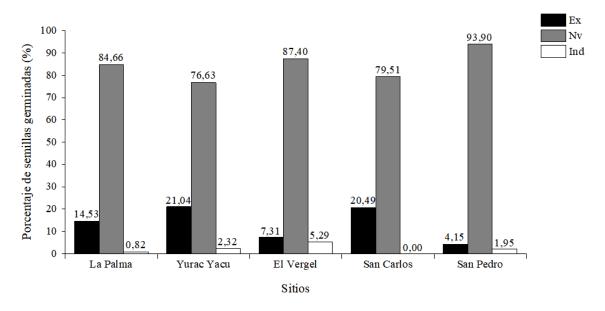
T212-	R	La P	alma	Yura	c Yacu	El V	ergel	San	Carlos	San Pedro	C
Familia	Especie	8 años*	10 años*	8 años*	10 años*	8 años*	10 años*	9 años*	12 años*	9 años*	Suma
Phytolaccaceae	Phytolacca rivinoides Kunth & C.D. Bouché	0,06	0,00	0,00	0,00	0,57	0,00	0,00	0,00	0,00	0,64
Piperaceae	Peperomia pellucida (L.) Kunth	2,42	9,42	8,47	21,26	16,11	31,07	11,33	5,09	10,27	115,44
	Mecardonia procumbens (Mill.) Small	0,32	6,62	22,47	114,72	4,46	1,85	23,68	34,70	6,79	215,60
Diantaginagaa	Scoparia dulcis L.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,61	1,61
Plantaginaceae	Stemodia verticillata (Mill.) Hassl.	0,06	0,19	1,59	0,13	0,45	0,00	1,15	1,72	3,40	8,68
	Veronica persica Poir.	5,35	7,96	26,87	62,07	1,21	6,37	55,00	39,53	5,43	209,79
	Dactyloctenium aegyptium (L.) Willd.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,27	1,27
	Eleusine indica (L.) Gaertn.	0,00	0,00	2,16	0,83	0,00	0,00	0,00	0,00	1,19	4,18
Poaceae	Leptochloa filiformis (Pers.) P.Beauv.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,02	1,02
	Panicum trichoides Sw.	6,56	0,32	2,29	4,14	14,13	3,37	0,00	0,00	0,25	31,07
	Rottboellia cochinchinensis (Lour.) Clayton	0,76	0,06	0,19	0,38	0,32	0,19	0,00	0,13	0,00	2,04
	Borreria latifolia (Aubl.). K. Schum	0,00	0,76	0,00	0,00	0,00	2,36	0,00	0,38	0,00	3,50
Rubiaceae	Mitracarpus hirtus (L.) DC.	2,55	0,83	0,32	1,85	0,89	0,38	0,51	0,19	1,61	9,12
	Spermacoce sp.	0,25	0,13	0,38	2,10	2,23	0,00	0,00	0,00	0,25	5,35
	Browallia americana L.	0,00	0,06	2,10	0,00	0,00	0,00	0,00	0,00	0,00	2,16
Calamanaa	Capsicum sp.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,70	0,00	0,70
Solanaceae	Physalis angulata L.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,34	0,34
	Solanum americanum Mill.	0,57	0,13	0,06	0,45	0,45	1,85	0,38	1,40	0,17	5,45
Talinaceae	Talinum paniculatum (Jacq.) Gaertn.	0,00	0,00	0,00	0,00	0,00	0,25	0,00	0,38	0,00	0,64
	Boehmeria sp.	0,00	24,64	0,00	0,00	0,00	0,00	0,00	0,00	0,00	24,64
Urticaceae	Laportea aestuans (L.) Chew	2,04	7,32	4,27	0,00	23,05	8,72	0,51	11,14	0,17	57,21
	Urtica urens L.	0,83	1,02	0,38	0,00	0,00	0,00	0,00	0,00	0,00	2,23
Violaceae	Hybanthus attenuatus (Humb. & Bonpl. ex Schult.) Schulze-Menz	0,00	0,00	0,00	0,00	0,00	0,00	0,13	0,89	0,08	1,10
Vitaceae	Cissus verticillata (L.) Nicolson & C.E.Jarvis	0,00	0,00	0,00	0,00	0,00	0,00	0,13	0,00	0,00	0,13

^{*} Valores expresados en millones. **Elaborado: Autor.**

Tabla 14. Familia, especie, origen dispersión ciclo debida propagación forma de vida y tipo de plantas de las semillas germinadas del banco de semillas del suelo en plantaciones forestales de teca de la zona central del litoral ecuatoriano, año 2019.

Familia	Especie	Origen	Dispersión	Ciclo de vida	Propagación	Forma de vida	Tipo de planta	Fuente
Amaranthaceae	Achyranthes aspera L.	Nv	Hm, Z	P	S, V	Hi	D	CABI (2019); Randall (2017); Tropicos.org (2019a); Vibrans (2009)
	Conyza canadensis (L.) Cronquist	Ex	A, H, Hm, Z	An	S	Hi	D	CABI (2019); Randall (2017); Tropicos.org (2019a)
	Cyanthillium cinereum (L.) H.Rob.	Ex	A, Hm	An	S	Hi	D	CABI (2019); Tropicos.org (2019a); Vibrans (2009)
Astomosoo	Dittrichia sp.	Ex	A, H, Hm	P	S	Hi	D	Randall, (2017); Tropicos.org (2019a)
Asteraceae	Eleutheranthera ruderalis (Sw.) Sch.Bip.	Nv	A, Z	An	S	Hi	D	HEAR (2019); Randall, (2017); Tropicos.org (2019a); Weerasinghe (2016)
	Emilia fosbergii Nicolson	Ex	A, Hm	An	S	Hi	D	CABI (2019); Randall (2017); Tropicos.org (2019a)
	Galinsoga quadriradiata Ruiz & Pav.		A, H, Hm, Z	An	S	Hi	D	CABI (2019); Randall (2017); Tropicos.org (2019a)
Brassicaceae	Cardamine hirsuta L.	Ex	A, Au, H, Hm, Z	An	S	Hi	D	Randall (2017); Tropicos.org (2019a); Vibrans (2009)
Caryophyllaceae	Drymaria cordata (L.) Willd. ex Schult.	Nv	H, Hm	An	S	Hi	D	Randall (2017); Tropicos.org (2019a); Vibrans (2009)
Cleomaceae	Cleome aculeata L.	Ex	Hm	An	S	Arb	D	Randall (2017); Tropicos.org (2019a); Zapata (2006)
	Commelina erecta L.	Nv	Hm	P	S	Hi	M	Randall (2017); Tropicos.org (2019a); Vibrans (2009)
Commelinaceae	Murdannia nudiflora (L.) Brenan	Ex	A, H, Hm, Z	P	S, V	Hi	M	CABI (2019); Randall (2017); Tropicos.org (2019a)
	Tripogandra serrulata (Vahl) Handlos	Nv	Au	P	S	Hi	M	Randall (2017); Tropicos.org (2019a); Vibrans (2009)
Convolvulaceae	Ipomoea grandifolia (Dammer) O'Donell	Nv	Au	P	S	Hi	D	Carrizo y Sobrero (2001); Peres (20-16); Randall (2017)
Cucurbitaceae	Momordica charantia L.	Ex	Hm, Z	P	S, V	Tr	D	CABI (2019); Randall (2017); Tropicos.org (2019a)

Familia	Especie	Origen	Dispersión	Ciclo de vida	Propagación	Forma de vida	Tipo de planta	Fuente
	Cyperus sp.	Nv	Hm, Z	P	S	Hi	M	Randall (2017); Tropicos.org (2019a)
	Cyperus compressus L.	Nv	H, Hm	An	S, V	Hi	M	CABI (2019); Randall (2017); Tropicos.org (2019a)
	Cyperus esculentus L.		A, H, Hm, Z	P	S, V	Hi	M	CABI (2009); Randall (2017); Tropicos.org (2019a); Vibrans (2009)
	Cyperus iria L.	Ex	H, Hm	An	S	Hi	M	HEAR (2019); Randall (2017); Tropicos.org (2019a)
	Cyperus laevigatus L.	Nv	Hm	P	S	Hi	M	Randall (2017); Tropicos.org (2019a); Tropicos.org (2019b)
	Cyperus odoratus L.	Nv	H, Hm, Z	P	S	Hi	M	Randall (2017); Tropicos.org (2019a); Vibrans (2009)
Cyperaceae	e Cyperus rotundus L.		A, H, Hm, Z	P	S, V	Hi	M	CABI (2019); Randall (2017); Tropicos.org (2019a); Vanangamudi <i>et al.</i> (2013)
	Cyperus sesquiflorus (Torr.) Mattf. & Kük.	Nv	Hm, Z	P	S	Hi	M	Randall (2017); Tropicos.org (2019a); Tropicos.org (2019b)
	Fimbristylis dichotoma (L.) Vahl	Nv	H, Hm, Z	An	S, V	Hi	M	CABI (2019); Randall (2017); Tropicos.org (2019a)
	Fimbristylis littoralis Gaudich.	Nv	Н	P	S	Hi	M	CABI (2019); Randall (2017); Tropicos.org (2019a)
	Rhynchospora radicans (Schltdl. & Cham.)	Nv	Au	P	S	Hi	M	Tropicos.org (2019a); Vibrans (2009)
	Scirpus sp.	Nv	Hm, Z	An	S	Hi	M	Randall (2017); Tropicos.org (2019a)
	Acalypha arvensis Poepp.	Nv	Au	An	S	Hi	D	Cardiel (1995); Peres (2016); Tropicos.org (2019a)
	Acalypha setosa A.Rich.	Nv	Au	An	S	Hi	D	Tropicos.org (2019a); Vibrans (2009)
Euphorbiaceae	Croton lobatus L.	Nv	Hm	An	S	Hi	D	Randall (2017); Tropicos.org (2019a); Vibrans (2009)
	Euphorbia graminea Jacq.	Nv	Hm	An	S	Hi	D	HEAR (2019); Randall (2017); Tropicos.org (2019a)
	Euphorbia hirta L.	Nv	Au, H, Hm, Z	An	S	Hi	D	Randall (2017); Tropicos.org (2019a); Vanangamudi <i>et al.</i> (2013);


Familia	Especie	Origen	Dispersión	Ciclo de vida	Propagación	Forma de vida	Tipo de planta	Fuente
Fabaceae	Desmodium incanum DC.	Nv	Hm	P	S, V	Hi	D	Randall (2017); Tropicos.org (2019); Vibrans (2009)
rabaceae	Rhynchosia minima (L.) DC.	Nv	Hm	P	S	Tr	D	HEAR (2019); Randall (2017); Tropicos.org (2019a)
Indeterminada 1	Indeterminada 1	Ind	Ind	Ind	Ind	Ind	Ind	_
Indeterminada 2	Indeterminada 2	Ind	Ind	Ind	Ind	Ind	Ind	_
Indeterminada 3	Indeterminada 3	Ind	Ind	Ind	Ind	Ind	Ind	_
Indeterminada 4	Indeterminada 4	Ind	Ind	Ind	Ind	Ind	Ind	
Indeterminada 5	Indeterminada 5	Ind	Ind	Ind	Ind	Ind	Ind	
Indeterminada 6	Indeterminada 6	Ind	Ind	Ind	Ind	Ind	Ind	
Indeterminada 7	Indeterminada 7	Ind	Ind	Ind	Ind	Ind	Ind	
Indeterminada 8	Indeterminada 8	Ind	Ind	Ind	Ind	Ind	Ind	_
Lamiaceae	Tectona grandis L.f.	Ex	Hm	P	S, V	Ar	D	CABI (2019); Randall (2017)
	Abutilon pauciflorum A.StHil.	Ex	Hm	P	S	Arb	D	Krapovickas y Tolaba (2008); Randall (2017)
Malvaceae	Ochroma pyramidale (Cav. ex Lam.) Urb.	Nv	A, Hm	P	S	Ar	D	HEAR (2019); Randall (2017); Tropicos.org (2019a)
	Sida rhombifolia L.	Nv	H, Hm, Z	P	S	Arb	D	Randall (2017); Tropicos.org (2019a); Vibrans (2009)
Microteaceae	Microtea debilis Sw.	Nv	Au	An	S	Hi	D	Peres (2016); Sukhorukov <i>et al.</i> (20-19); Tropicos.org (2019a)
Molluginaceae	Mollugo verticillata L.	Nv	Hm, Z	An	S	Hi	D	Randall (2017); Tropicos.org (2019a); Vibrans (2009)
Onagraceae	Ludwigia octovalvis (Jacq.) P.H. Raven	Nv	H, Hm	P	S, V	Arb	D	HEAR (2019); Randall (2017); Tropicos.org (2019a)

Familia	Especie	Origen	Dispersión	Ciclo de vida	Propagación	Forma de vida	Tipo de planta	Fuente
	Oxalis corniculata L.	Nv	Hm, Z	P	S, V	Hi	D	CABI (2019); Randall (2017); Tropicos.org (2019a)
Oxalidaceae	Oxalis barrelieri L.	Nv	Hm	P	S	Hi	D	HEAR (2019); Randall (2017); Tropicos.org (2019a)
	Oxalis divaricata Mart. ex Zucc	Ex	Au	P	S	Hi	D	Moreira y Bragança (2011); Silva <i>et al.</i> (2015); Tropicos.org (2019a)
	Phyllanthus amarus Schumach. & Thonn.	Ex	Hm	P	S	Ar	D	Moreira y Bragança (2011); Randall (2017); Tropicos.org (2019a)
Phyllanthaceae	Phyllanthus maderaspatensis L. Phyllanthus niruri L.		A, Hm, Z	P	S, V	Hi	D	Randall (2017); Vanangamudi <i>et al.</i> (2013)
Tilynanthaceae			H, Hm, Z	An	S	Hi	D	Moreira y Bragança (2011); Randall (2017); Tropicos.org (2019a)
	Phyllanthus urinaria L.	Ex	A, H, Hm	An	S	Hi	D	CABI (2009); Silva y Sales (2007); Tropicos.org (2019a);
Phytolaccaceae	Phytolacca rivinoides Kunth & C.D. Bouché	Nv	Hm	P	S	Arb	D	Guaglianone (1996); Randall (2017); Tropicos.org (2019a)
Piperaceae	Peperomia pellucida (L.) Kunth	Nv	Hm	P	S	Hi	D	HEAR (2019); Randall (2017); Tropicos.org (2019a)
	Mecardonia procumbens (Mill.) Small	Nv	A, Hm	P	S	Hi	D	HEAR (2019); Randall (2017); Tropicos.org (2019a)
Plantaginaceae	Scoparia dulcis L.	Nv	H, Hm	P	S	Hi	D	HEAR (2019); Randall (2017); Tropicos.org (2019a)
Tamagmaccac	Stemodia verticillata (Mill.) Hassl.	Nv	Au	P	S	Hi	D	Jeyaprakash <i>et al.</i> (2018); Peres (20-16); Tropicos.org (2019a)
	Veronica persica Poir.	Ex	A, H, Hm, Z	An	S	Hi	D	HEARG (2019); Randall (2017); Tropicos.org (2019a)
	Dactyloctenium aegyptium (L.) Willd.	Ex	A, H, Hm, Z	An	S, V	Hi	M	CABI (2019); Randall (2017); Tropicos.org (2019a)
Poaceae	Eleusine indica (L.) Gaertn.	Ex	A, H, Hm, Z	An	S	Hi	M	CABI (2019); Randall (2017); Tropicos.org (2019a); Vanangamudi <i>et al.</i> (2013)
	Leptochloa filiformis (Pers.) P.Beauv.	Nv	Hm	An	S	Hi	M	De la Torre <i>et al.</i> (2008); Randall (20-17)
	Panicum trichoides Sw.	Nv	Hm	An	S	Hi	М	Randall (2017); Tropicos.org (2019a); Vibrans (2009)

Familia	Especie	Origen	Dispersión	Ciclo de vida	Propagación	Forma de vida	Tipo de planta	Fuente
	Rottboellia cochinchinensis (Lour.) Clayton	Ex	H, Hm, Z	An	S	Hi	M	CABI (2019); Randall (2017); Tropicos.org (2019a)
	Borreria latifolia (Aubl.). K. Schum	Ex	Au	An	S	Hi	D	CABI (2019); Tropicos.org (2019a); Vibrans (2009)
Rubiaceae	Mitracarpus hirtus (L.) DC.	Nv	Н	An	S	Hi	D	HEAR (2019); Randall (2017); Tropicos.org (2019a)
	Spermacoce sp.	Nv	Hm	An	S	Hi	D	Randall (2017); Tropicos.org (2019a)
	Browallia americana L.		Hm	An	S, V	Hi	D	Randall (2017); Tropicos.org (2019a); Vibrans (2009)
0.1	Capsicum sp.	Nv	Hm, Z	An	S	Hi	D	De la Torre <i>et al.</i> (2008); Randall (20-17); Waizel y Camacho (2011)
Solanaceae	Physalis angulata L.	Nv	H, Hm, Z	An	S	Hi	D	CABI (2019); Randall (2017); Tropicos.org (2019a)
	Solanum americanum Mill.	Nv	H, Hm, Z	P	S	Hi	D	HEAR (2019); Randall (2017); Tropicos.org (2019a)
Talinaceae	Talinum paniculatum (Jacq.) Gaertn.	Nv	Hm	P	S	Hi	D	HEAR (2019); Randall (2017); Tropicos.org (2019a)
	Boehmeria sp.	Nv	Au	P	S	Hi	D	Steinmann (2005); Tropicos.org (20-19a)
Urticaceae	Laportea aestuans (L.) Chew	Nv	Au	An	S	Hi	D	HEAR (2019); Randall (2017); Tropicos.org (2019a)
	Urtica urens L.	Ex	A, Hm, Z	An	S	Hi	D	CABI (2019); Randall (2017); Tropicos.org (2019a)
Violaceae	Hybanthus attenuatus (Humb. & Bonpl. ex Schult.) Schulze-Menz	Nv	H, Hm	An	S	Hi	D	HEAR (2019); Randall (2017); Tropicos.org (2019a)
Vitaceae	Cissus verticillata (L.) Nicolson & C.E.Jarvis	Nv	Hm	P	S, V	Tr	D	HEAR (2019); Randall (2017); Tropicos.org (2019a)

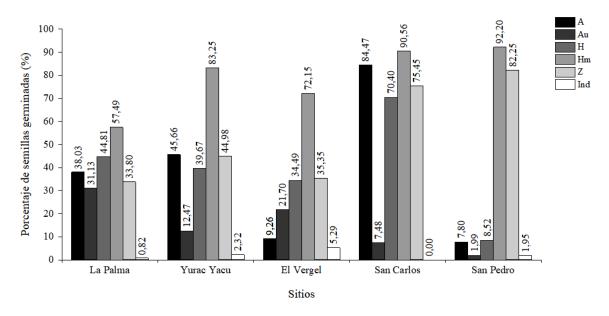
Origen: exótica (Ex), nativa (Nv). Dispersión: anemocoria (A), autocoria (Au), hidrocoria (H), hemerocoria (Hm), zoocoria (Z). Ciclo de vida: anual (An), perenne (P). Propagación: semilla (S), vegetativa (V). Forma de vida: árbol (A), arbusto (Arb), hierba (Hi), helecho (He), trepadora (Tr). Tipo de planta: dicotiledónea (D), monocotiledónea (M). Indeterminada: Ind. **Elaborado: Autor.**

menor, observándose valores destacables en Yurac Yacu con 1829 individuos (21,04%) y San Carlos con 1161 individuos (20,49%). Por otro lado, el número de individuos categorizado como indeterminado no fue relevante y el mayor porcentaje (5,29%) se registró en El Vergel (Figura 9).

Figura 9. Número de individuos (en porcentaje) de origen: nativo (Nv), exótico (Ex) e indeterminado (Ind) presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.

4.1.5.2. Dispersión

En La Palma se observó que el mayor porcentaje de individuos (57,49%) presentaron dispersión de semillas de tipo antropogénica. Una menor proporción de estos mostraron formas de dispersión de semillas no tan variable por agua con 44,81% (1209 individuos), viento con 38,03% (1026 individuos), animales con 33,80% (912 individuos) y gravedad con 31,13% (840 individuos) (Figura 10).


Para Yurac Yacu, se reportaron 7235 individuos (83,25%) con semillas que tienden a presentar mayor dispersión por acción antrópica y con valores no tan destacables, 3968 individuos (45,66%) por acción del viento, 3909 individuos (44,98%) por animales, 3448 individuos (39,67%) por agua, y 1084 individuos (12,47%) por gravedad (Figura 9). En El Vergel, un número de 2617 individuos (72,15%) representaron a especies que predisponen como medio de dispersión de semillas al hombre y, muy por debajo, individuos con semillas

de dispersión zoócora (35,35%), hidrócora (34,49%), autocora (21,70%) y anemócora (9,26%) (Figura 10).

En San Carlos, el mayor número de individuos registrados indicaron dispersión de semillas por acción del hombre con 5130 individuos (90,56%) y viento con 4785 individuos (84,47%). Un 75,45% (4274 individuos) reflejaron dispersión por animales, 70,40% (3988 individuos) por agua y con un valor inferior de 424 individuos (7,48%), especies con dispersión autocora (Figura 10).

Es de notar que, de forma similar a los demás sitios, en San Pedro se observó un valor muy superior de individuos (2176 individuos) con tendencia a dispersar sus semillas por acción antrópica, aunque también predomina la dispersión de tipo zoócora (82,25%). Mientras que, otras formas de dispersión registradas reportaron valores muy inferiores de 201 individuos por hidrocoria, 184 individuos por anemocoria y 47 individuos por autocoria (Figura 10).

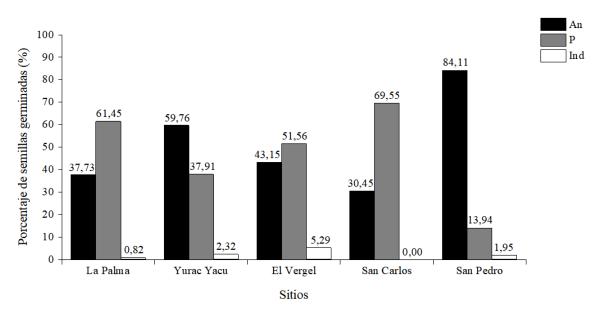

En general, del número total de individuos encontrados en el BSS, 33,97% exhibieron dispersión hemerocora, seguido de zoócora (22,37%), anemócora (18,70%), hidrócora (18,34%), autocora (5,78%) e indeterminado (0,84%).

Figura 10. Número de individuos (en porcentaje) en función a la forma de dispersión: anemocoria (A), autocoria (Au), hidrocoria (H), hemerocoria (Hm), zoocoria (Z) e indeterminada (Ind), presentes en el banco de semillas del suelo en plantaciones forestales de teca de la zona central del litoral ecuatoriano, año 2019.

4.1.5.3. Ciclo de vida

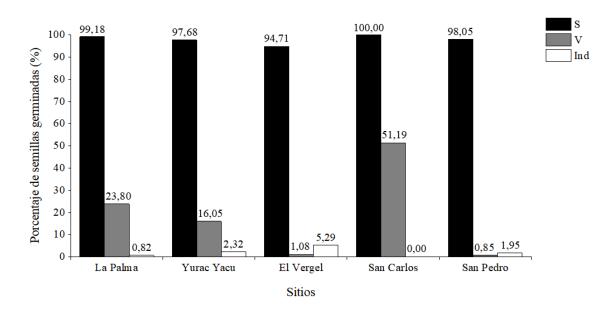

En San Carlos con 3940 individuos (69,55%), La Palma con 1645 individuos (61,45%) y El Vergel con 1870 individuos (51,56%), el número de plantas perennes fue superior al observado de plantas anuales. Al contrario de San Pedro y Yurac Yacu, donde se registró un número sobresaliente de plantas anuales correspondiente a 1985 individuos (84,11%) y 5194 individuos (59,76%), respectivamente. El número total de individuos de especies con ciclo de vida anual (49,85%) fue ligeramente superior al reportado de especies con ciclo perenne (48,14%) (Figura 11).

Figura 11. Número de individuos (en porcentaje) con clico de vida: anual (An), perenne (P) e indeterminado (Ind) presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.

4.1.5.4. Propagación

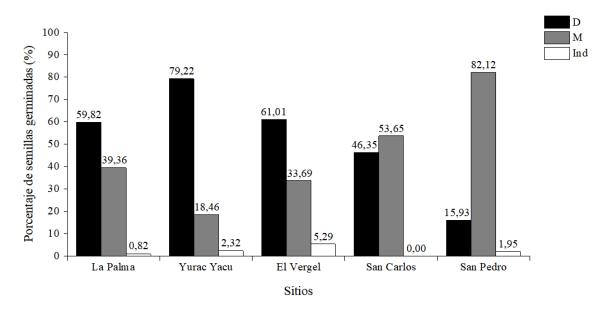
Las especies registradas en todos los sitios de estudio indicaron como principal forma de propagación a las semillas (80,53%) con un número de individuos superior a 3435 (94,71%) para el caso de El Vergel. Por otro lado, referente a los individuos que se propagan vegetativamente (17,82%), en San Carlos se observó la mayor cantidad de estos representado en 2900 individuos (51,19%) y, en el resto de los sitios, valores inferiores de 642 individuos (23,80%) en La Palma, 1395 individuos (16,05%) en Yurac Yacu, 39 individuos (1,08%) en El Vergel y 20 individuos (0,85%) en San Pedro (Figura 12).

Figura 12. Número de individuos (en porcentaje) con tipo de propagación por: semillas (S), vegetativa (V) e indeterminado (Ind), presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.

4.1.5.5. Forma de vida

Respecto a su forma de vida, en todos los sitios de estudio gran parte del número de especies fueron categorizados como hierbas, con valores que oscilaron entre un 93,60 y 99,74% de individuos. Como arbustos se registraron 241 individuos (2,77%) en Yurac Yacu, 75 individuos (2,78%) en La Palma, 38 individuos (1,05%) en El Vergel y 12 individuos (0,21%) en San Carlos. La presencia de árboles solo se dio en San Pedro con 4 individuos (0,17%), San Carlos con 2 individuos (0,04%) y El Vergel con 1 individuo (0,03%). Especies catalogadas como trepadoras, se encontraron en San Pedro (0,04%), El Vergel (0,03%) y San Carlos (0,02%) con 1 individuo en cada sitio. A diferencia de lo detallado, no se observó la germinación de helechos (Tabla 15).

En los BSS de los sitios de estudio, las hierbas representaron el 96,36% del total de individuos, arbustos el 1,59%, árboles el 0,03%, trepadoras el 0,01%, helechos el 0,00% e indeterminados el 2,01%.


Tabla 15. Número de individuos según su forma de vida: árbol (Ar), arbusto (Arb), hierba (Hi), helecho (He), trepadora (Tr) e indeterminada (Ind), presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.

Sitios		Forma de vida									
Sitios	Ar*	Arb*	Hi*	He*	Tr*	Ind*					
La Palma	0,00	2,78	96,40	0,00	0,00	0,82					
Yurac Yacu	0,00	2,77	94,90	0,00	0,00	2,32					
El Vergel	0,03	1,05	93,60	0,00	0,03	5,29					
San Carlos	0,04	0,21	99,74	0,00	0,02	0,00					
San Pedro	0,17	0,00	97,84	0,00	0,04	1,95					

^{*} Valores expresados como número de individuos en porcentaje.

4.1.5.6. Tipo de planta

La cantidad de individuos de hoja ancha fue mayor en los sitios de Yurac Yacu con 6885 individuos (79,22%), El Vergel con 2213 individuos (61,01%) y La Palma con 1614 individuos (59,82%), mientras que, en los demás sitios, predominaron individuos de especies de hoja fina con valores de 3039 individuos (53,65%) en San Carlos y 1938 individuos (82,12%) en San Pedro. Considerando el número total de individuos registrados, 59,52% pertenecen a la clase dicotiledónea y 38,47% a la monocotiledónea (Figura 13).

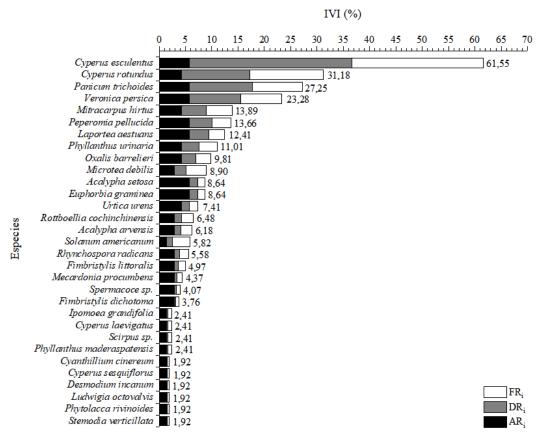
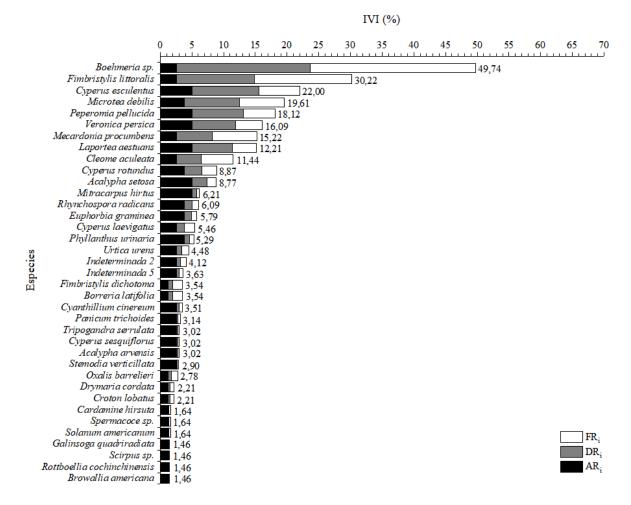


Figura 13. Número de individuos (en porcentaje) de clase: dicotiledónea (D), monocotiledónea (M) e indeterminado (Ind), presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.

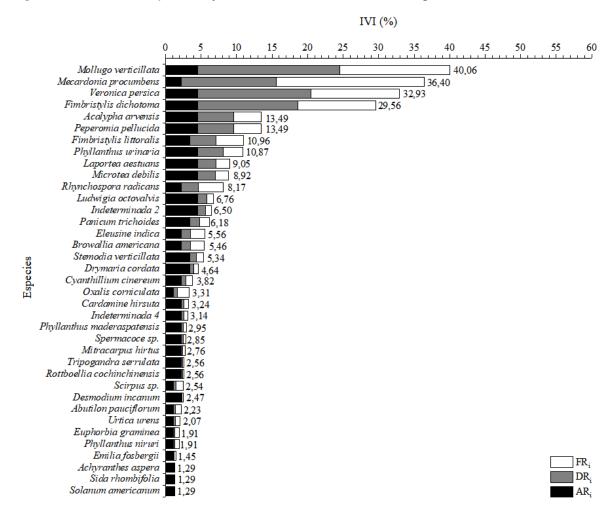
4.2. Índice de valor de importancia del banco de semillas de arvenses en plantaciones de teca en la zona central del litoral ecuatoriano


4.2.1. La Palma

En plantaciones de 8 años para el sitio La Palma, las especies de mayor IVI fueron *Cyperus esculentus* L. (61,55%), *Cyperus rotundus* L. (31,18%), *Panicum trichoides* Sw. (27,25%) y *Veronica persica* Poir. (23,28%). Las especies que indicaron un menor IVI de 1,92% fueron *Cyanthillium cinereum* (L.) H.Rob., *Cyperus sesquiflorus* (Torr.) Mattf. & Kük., *Desmodium incanum* DC, *Ludwigia octovalvis* (Jacq.) P.H. Raven, *Phytolacca rivinoides* Kunth & C.D. Bouché y *Stemodia verticillata* (Mill.) Hassl. (Figura 14).

Figura 14. Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 8 años para el sitio La Palma del cantón Santo Domingo, provincia de Santo Domingo de los Tsáchilas, año 2019.

En plantaciones de mayor edad (10 años), las especies con un IVI relevante fueron *Boehmeria* sp. (49,74%), *Fimbristylis littoralis* Gaudich. (30,22%), *Cyperus esculentus* L. (22,00%), *Microtea debilis* Sw. (19,61%) y *Peperomia pellucida* (L.) Kunth (18,12%). Mientras que, *Galinsoga quadriradiata* Ruiz & Pav., *Scirpus* sp., *Rottboellia cochinchinensis* (Lour.) Clayton y *Browallia americana* L. reflejaron un bajo IVI de 1,46% (Figura 15).


Figura 15. Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 10 años para el sitio La Palma del cantón Santo Domingo, provincia de Santo Domingo de los Tsáchilas, año 2019.

Boehmeria sp. considerada como representativa en estas plantaciones, pertenece a un género que se compone de unas 60 a 80 especies distribuidas principalmente en los trópicos de América y Asia, extendiéndose a zonas templadas (Romaniuc *et al.*, 2009). A algunas especies les gusta la sombra y los ambientes húmedos, crecen en suelos con alta humedad bajo bosques densos y árboles en los valles, distribuidos por grupo (Liu *et al.*, 2003). El género incluye plantas herbáceas perennes, pubescentes pero sin pelos urticantes; de hojas alternas u opuestas con láminas de margen aserrado, dentado o crenado; las inflorescencias pueden ser unisexuales o bisexuales, en forma de glomérulos axilares o pseudoespigas alargadas con las flores congestionadas; y el aquenio se encuentra envuelto por el perianto fuertemente persistente (Wilmot y Friis, 1996).

4.2.2. Yurac Yacu

En el banco de semillas de plantaciones de 8 años ubicadas en este sitio, las especies con el IVI más alto que reflejan su peso ecológico fueron *Mollugo verticillata* L. (40,06%), *Mecardonia*

procumbens (Mill.) Small (36,40%), Veronica persica Poir. (32,93%) y Fimbristylis dichotoma (L.) Vahl (29,56%). Por el contrario, aquellas con menor IVI (1,29%) fueron Achyranthes aspera L., Sida rhombifolia L. y Solanum americanum Mill. (Figura 16).

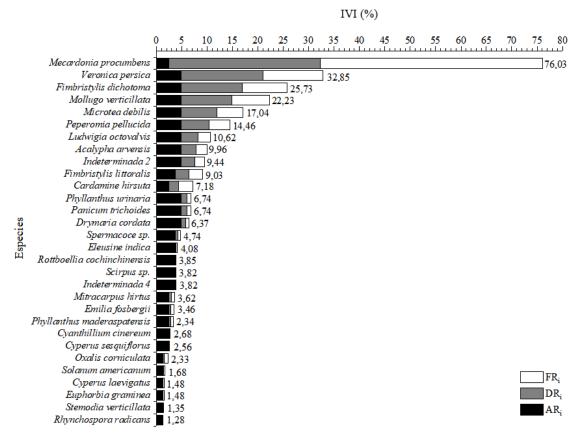
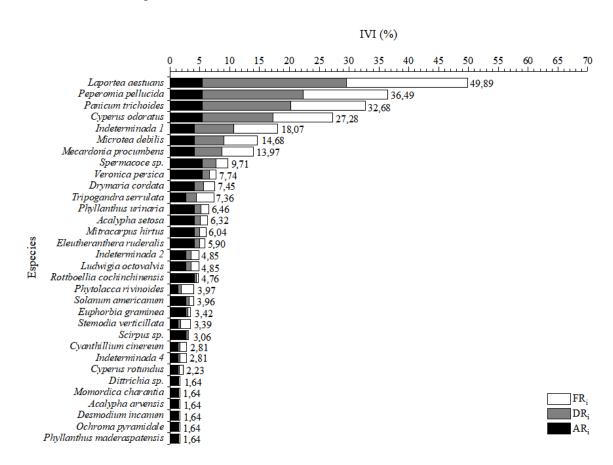


Figura 16. Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 8 años para el sitio Yurac Yacu del cantón Valencia, provincia de Los Ríos, año 2019.

Mollugo verticillata L. (Molluginaceae) considerada como especie de mayor importancia ecológica en plantaciones de 8 años para el sitio Yurac Yacu, se caracteriza por ser una hierba de origen nativo con rango de distribución de 0 a 500 msnm en la región Costa, principalmente en las provincias de El Oro, Guayas y Manabí (Tropicos.org, 2019a). Esta especie se desarrolla bien en suelos arenosos y con baja luminosidad (Álvaro, 1998). Se encuentra en zonas cultivadas, ribera de ríos, llanuras aluviales, márgenes de humedales, bordes de carreteras y otros sitios perturbados (Begley, 2018). Botánicamente, se describe como una planta de tallos que se dividen en dos, postrados o un poco ascendente, lampiños y forma matas aplanadas; las hojas son de 3-8 agrupadas en los nudos, alargadas, de 2-3 cm de largo y menos de 1 cm de ancho, sin pelos; inflorescencia con 2-5 flores agrupadas en las axilas de las hojas superiores,

flores pequeñas, blancas, tienen un cabillo largo y muy delgado; y el fruto es una cápsula lampiña que tiene unas 12 semillas rojo-anaranjadas (Pitty y Molina, 1998).

Por consiguiente, en plantaciones de mayor edad, es notable la predominancia de *Mecardonia* procumbens (Mill.) Small, *Veronica persica* Poir., *Fimbristylis dichotoma* (L.) Vahl, *Mollugo verticillata* L. y *Microtea debilis* Sw., que expresaron IVI altos en comparación a *Rhynchospora radicans* (Schltdl. & Cham.) que indicó el valor más bajo de 1,28% (Figura 17).


Figura 17. Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 10 años para el sitio Yurac Yacu del cantón Valencia, provincia de Los Ríos, año 2019.

Mecardonia procumbens (Mill.) Small con un IVI de 68,73%, es una hierba nativa que en el país, tiene un amplio rango de distribución que va de 0 a 3000 msnm, encontrándose en las provincias de Azuay, Bolívar, Cañar, Chimborazo, El Oro, Galapagos, Guayas, Imbabura, Loja, Los Ríos, Manabí, Napo, Pichincha, Sucumbíos, Zamora-Chinchipe (Tropicos.org, 2019a). Prefiere sitios húmedos, a orilla de los ríos, cerca de charcas o áreas abiertas en la estación lluviosa (Alemán *et al.*, 2012). Se describe como planta erecta o ascendente, a menudo ramificada desde la base; las hojas son opuestas, glabras, elípticas a ovadas-elípticas de 10 a 25 mm de largo y 6 a 12 mm de ancho; las flores son bisexuales, axilares, solitarias, de 8 mm de largo y color amarillo; el fruto es una cápsula, estrechamente elipsoide, de unos 4 mm de largo;

y produce semillas numerosas de color amarillo o marrón verdoso, de 0,8 mm de largo (Yakandawala y Yakandawala, 2007).

4.2.3. El Vergel

En la zona de El Vergel, las especies con mayor importancia ecológica en plantaciones de 8 años fueron *Laportea aestuans* (L.) Chew (49,89%), *Peperomia pellucida* (L.) Kunth (36,49%), *Panicum trichoides* Sw. (32,68%) y *Cyperus odoratus* L. (27,28%). Por otra parte, *Dittrichia* sp., *Momordica charantia* L., *Acalypha arvensis* Poepp., *Desmodium incanum* DC., *Ochroma pyramidale* (Cav. ex Lam.) Urb. y *Phyllanthus maderaspatensis* L. resultaron con un IVI inferior de 1,64% (Figura 18).

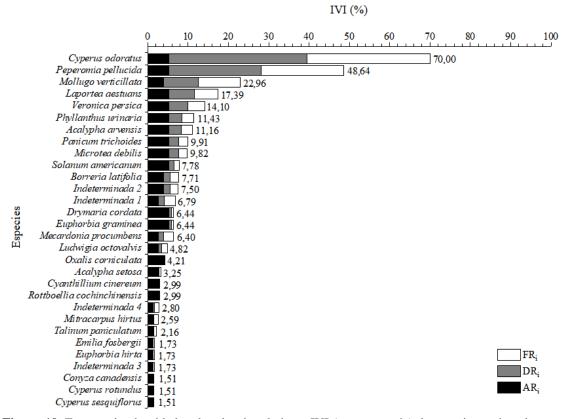
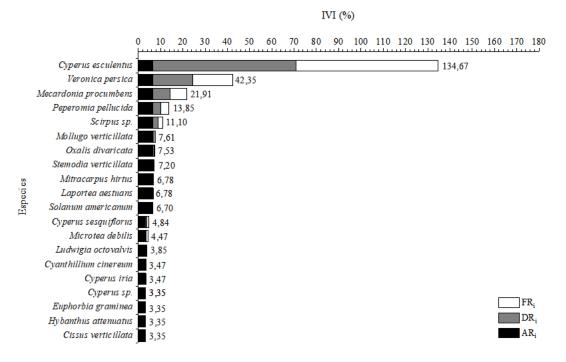


Figura 18. Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 8 años para el sitio El Vergel del cantón Valencia, provincia de Los Ríos, año 2019.

Laportea aestuans (L.) Chew (Urticaceae) que reportó valores de frecuencia (5,41%), densidad (24,13%) y abundancia (20,35%) altos, se describe como una hierba nativa del país, con rango de distribución de 0 a 1000 msnm, presente en las provincias de Esmeraldas, Galapagos, Guayas, Los Ríos, Napo y Sucumbíos (Tropicos.org, 2019a). Esta especie se encuentra en tierras de cultivo, a lo lago de caminos y en otros lugares perturbados, en bosques o zonas

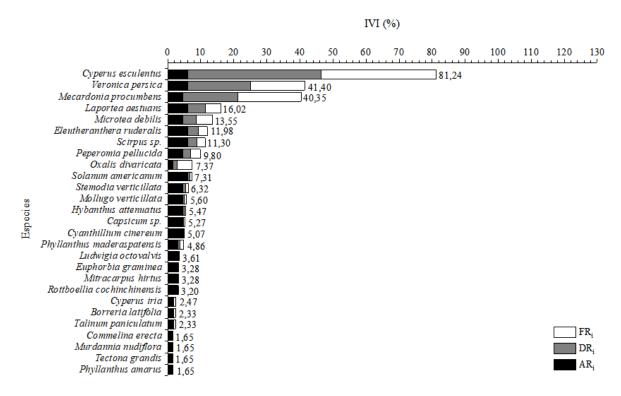
boscosas; siempre en áreas semi-sombreadas y a veces en grietas rocosas (Brink y Achigan, 2012). De acuerdo a sus características fenotípicas, alcanza hasta 1,50 m de alto; las hojas son láminas ovadas de 12 a 14 cm de largo y de 8 a 11 cm de ancho, con base truncada-redondeada, ápice acuminado y borde dentado; inflorescencia hirsuta de 6 a 14 cm de largo con flores estaminadas y pistiladas en la misma panícula; el fruto es un aquenio de 1 a 2 mm de diámetro; y las semillas son de color marrón a negro de 0,6 a 1 mm de largo (Pederneiras *et al.*, 2011).

Para este mismo sitio, en plantaciones de mayor edad (10 años), la especie *Cyperus odoratus* L. fue la más representativa con un IVI de 70,00%, seguido de *Peperomia pellucida* (L.) Kunth (48,64%), *Mollugo verticillata* L. (22,96%), *Laportea aestuans* (L.) Chew (17,39%) y *Veronica persica* Poir. (14,10%). A diferencia de *Conyza canadensis* (L.) Cronquist, *Cyperus rotundus* L. y *Cyperus sesquiflorus* (Torr.) Mattf. & Kük., que registraron un IVI inferior de 1,51% (Figura 19).


Figura 19. Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 10 años para el sitio El Vergel del cantón Valencia, provincia de Los Ríos, año 2019.

Cyperus odoratus L. de la familia Cyperaceae, considerada como la especie más representativa en plantaciones de 10 años para El Vergel, es una hierba perenne de origen nativo que se distribuye en el país desde los 0 a 1000 msnm, presente en las provincias de Carchi, Esmeraldas, Galapagos, Guayas, Loja, Los Ríos, Manabí, Morona-Santiago, Napo, Pichincha y Sucumbíos (Tropicos.org, 2019a). De acuerdo a la literatura, prefiere suelos húmedos con un pH de 5,0 a

7,2. Se encuentra en sitios abiertos, pastizales y bordes de carreteras (Gargiullo *et al.*, 2008). Taxonómicamente es una hierba perenne que alcanza unos 50 a 80 cm de alto; las hojas se disponen en número de 3 a 4 desde la base, son un poco más largas que el tallo, con forma de "W" invertida, miden 50-80 cm x 0,9-1,1 cm; la inflorescencia es compuesta de 15-17 cm x 20-28 cm, formando un cono, con 4 rayos primarios, 4 rayos secundarios, 4 rayos terciarios y 1 en el centro, reduciendo gradualmente su tamaño hacia el centro; cada espiga es cilíndrica de 5 x 4 cm y se compone 30-50 espiguillas, dispuestas en forma especiada, lineales, de 1,5-2,3 x 0,1 cm, y el fruto en un aquenio marrón, oblongo a obovado, de 1,5 x 0,7 mm (Ramachandran y Soosairaj, 2014)


4.2.4. San Carlos

El número de especies observadas en plantaciones de 9 años en San Carlos fue menor comparado con el de los demás sitios, sin embargo, las más importantes con IVI destacables fueron *Cyperus esculentus* L. (134,67%), *Veronica persica* Poir. (42,35%), *Mecardonia procumbens* (Mill.) Small (21,91%), *Peperomia pellucida* (L.) Kunth (15,21%) y *Scirpus* sp. (11,10%). Mientras que, aquellas con menor IVI fueron *Cyperus* sp., *Euphorbia graminea* Jacq., *Hybanthus attenuatus* (Humb. & Bonpl. ex Schult.) Schulze-Menz y *Cissus verticillata* (L.) Nicolson & C.E.Jarvis (Figura 20).

Figura 20. Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 9 años para el sitio San Carlos del cantón Quevedo, provincia de Los Ríos, año 2019.

De igual manera, en plantaciones de mayor edad (12 años) se reportó como especie más representativa a *Cyperus esculentus* L. con un IVI de 81,24%, valor que es inferior al porcentaje descrito para la plantación de 9 años, debido a la mayor cantidad de especies presentes. Otras especies importantes registradas fueron *Veronica persica* Poir., *Mecardonia procumbens* (Mill.) Small, *Laportea aestuans* (L.) Chew y *Microtea debilis* Sw. (Figura 21).

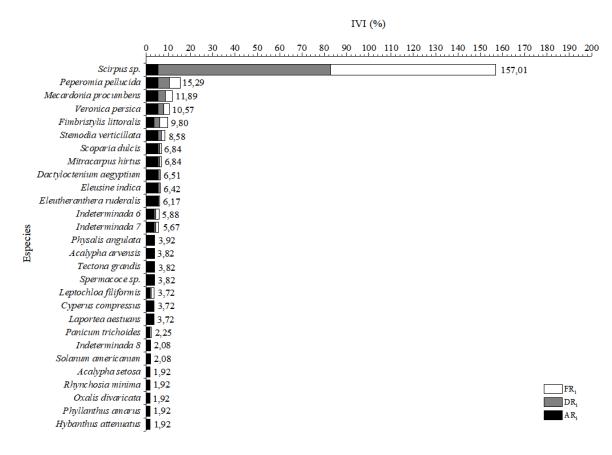


Figura 21. Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 12 años para el sitio San Carlos del cantón Quevedo, provincia de Los Ríos, año 2019.

En el país, *Cyperus esculentus* L. se distribuye hasta los 500 msnm en la región Costa y Galápagos (Trópicos.org, 2019a). Se encuentra en ambientes abiertos y alterados, dentro de los cultivos, orillas de caminos, en parcelas en descanso, en hortalizas y orillas de ríos. Es una especie que exige luz que y se desarrolla sobre suelos anegados, ricos en arcillas y con un pH de 5 a 7 (Egea *et al.*, 2018). Morfológicamente se considera como una planta de 10 a 60 cm de alto con tallo aéreo trígono, sin ramificar; las hojas tienen hasta 50 cm de largo y 1 cm de ancho, con la base envolviendo al tallo y el ápice terminando en punta fina; las flores son diminutas, desprovistas de cáliz y corola, y se disponen en dos hileras en número de 6 a 40, para formar conjuntos llamados espiguillas que miden 6 a 30 mm de largo y 3 mm de ancho y son de color café amarillento; y el fruto es seco, trígono, de unos 2 mm de largo y 0,8 mm de ancho (Calderón y Rzedowski, 2004).

4.2.5. San Pedro

En el sitio San Pedro del cantón Balzar, las especies de mayor importancia ecológica fueron *Scirpus* sp. con un IVI sobresaliente de 157,01%, seguido de *Peperomia pellucida* (L.) Kunth (15,29%), *Mecardonia procumbens* (Mill.) Small (11,89%), *Veronica persica* Poir. (10,57%), *Fimbristylis littoralis* Gaudich. (9,80%) y *Stemodia verticillata* (Mill.) Hassl. (8,58%). A diferencia de 5 especies que obtuvieron el menor IVI de 1,92% (Figura 22).

Figura 22. Frecuencia, densidad y abundancia relativa e IVI (en porcentaje) de especies registradas en el banco de semillas del suelo en plantaciones de teca de 9 años para el sitio San Pedro del cantón Balzar, provincia del Guayas, año 2019.

La especie que obtuvo el más alto IVI pertenece a un género que reporta según la literatura, unas 250 especies en sentido amplio o 35 en sentido estricto. Su distribución es cosmopolita, aunque prefiere sitios húmedos o anegados (Pérez, 2012). Las plantas de este género se caracterizan por tener tallos no ramificados; hojas basales y alternas en el culmo, planas, minuciosamente dentadas; inflorescencia terminal, en panículas irregulares o umbelas; espiguillas numerosas, pediceladas o sésiles, con muchas flores; escamas glabras; y aquenios trogónicos o lenticulares (Mohlenbrock, 2005).

4.3. Diversidad y similaridad de arvenses del banco de semillas del suelo en plantaciones de teca en la zona central del litoral ecuatoriano

4.3.1. Número de individuos e índices de diversidad alfa

Para todos los sitio de estudio, la riqueza en abundancia de individuos fue media con valores que oscilaron entre 2,44 y 4,79. La riqueza fue mayor en plantaciones de 8 años para los sitios Yurac Yacu (2644 individuos) y El Vergel (1500 individuos), y en plantaciones de mayor edad en La Palma (1836 individuos) y San Carlos (3276 individuos). En plantaciones de 9 años de San Pedro se registró una riqueza de 3,48 (2360 individuos) (Tabla 16).

Los valores de equitatividad presentaron variaciones que fluctuaron entre 0,33 y 0,74 en todos los sitios. En plantaciones de ambas edades para los sitios La Palma (0,71 y 0,74) y Yurac Yacu (0,71 y 0,67) y, El Vergel (0,69) para aquellas de 8 años, la abundancia de individuos fue homogénea o presentaron una equitatividad alta. En plantaciones de 9 y 12 años de San Carlos (0,40 y 0,57) la equitatividad de individuos fue ligeramente heterogénea en abundancia, lo que se registró también en El Vergel (0,64) para plantaciones de 10 años. Por otro lado, en San Pedro la abundancia fue heterogénea en las plantaciones de 9 años resultando en una equitatividad baja de 0,33 (Tabla 16).

El índice de Shannon-Wiever demostró que, la diversidad de especies en la mayoría de los sitios muestreados fue media, a excepción de las plantaciones de 9 años en San Carlos (1,20) y San Pedro (1,09), donde los valores revelaron una baja diversidad. Es de notar que, en Yurac Yacu (2,57) y El Vergel (2,40), con plantaciones de 8 años se observan valores superiores de diversidad que en aquellas de mayor edad, al contrario de lo registrado en La Palma (2,66) y San Carlos (1,89) (Tabla 16).

Con respecto al índice Simpson calculado, este indicó que la diversidad fue alta en plantaciones de 8 y 10 años establecidas en La Palma (0,85 y 0,90), Yurac Yacu (0,89 y 0,85) y El Vergel (0,87 y 0,81), y en aquellas de 12 años de San Carlos (0,77). Mientras que, en plantaciones de 9 años para San Carlos (0,54) y San Pedro (0,39), la diversidad fue media (Tabla 16).

Tabla 16. Valores de parámetros de diversidad alfa de especies presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.

G. I	Edad de		Riqueza	Equitatividad _	Diver	sidad
Sitios	plantación (años)	n	$(\mathbf{D}_{\mathrm{Mg}})$	(J')	(H')	(S)
L a Dalma	8	862	4,44 **	0,71 ***	2,43 **	0,85 ***
La Palma	10	1836	4,79 **	0,74 ***	2,66 **	0,90 ***
V Va	8	2644	4,57 **	0,71 ***	2,57 **	0,89 ***
Yurac Yacu	10	6047	3,33 **	0,67 ***	2,29 **	0,85 ***
El Wannal	8	1500	4,24 **	0,69 ***	2,40 **	0,87 ***
El Vergel	10	2127	3,79 **	0,64 **	2,18 **	0,81 ***
Son Conlos	9	2389	2,44 **	0,40 **	1,20 *	0,54 **
San Carlos	12	3276	3,21 **	0,57 **	1,89 **	0,77 ***
San Pedro	9	2360	3,48 **	0,33 *	1,09 *	0,39 **

^{***} Valores altos en la escala de interpretación.

Elaborado: Autor.

4.3.2. Similaridad de especies

4.3.2.1. Índice de Jaccard

El índice de Jaccard demostró que, la especies registradas en Yurac Yacu para plantaciones de 8 y 10 años son muy similares florísticamente, reflejando un valor sobresaliente de 0,72 x 100%. Entre los sitios La Palma, Yurac Yacu y El Vergel, la mayoría de las especies son medianamente parecidas. Sin embargo, casi la totalidad de valores obtenidos de la interacción entre los sitios de San Carlos y San Pedro con los sitios La Palma, Yurac Yacu y El Vergel, expresaron la presencia de disimilitud (no parecidos florísticamente), en especial, al compararse especies en plantaciones de 10 años de El Vergel con las aquellas reportadas en San Pedro (0,18 x 100%) (Tabla 17).

4.3.2.2. Análisis clúster

Los valores de similitud de Jaccard anteriormente señalados en la Tabla 17 se sintetizaron en el análisis de formación de conglomerados y composición de los clúster (Figura 23), donde se identificaron dos grandes grupos diferenciados por un valor de similitud de 18% que exhibieron una tendencia de agruparse en ambas edades de plantación. El grupo uno lo conformó de forma independiente el sitio San Pedro con plantaciones de 9 años. En el grupo dos, se observó que, Yurac Yacu y La Palma tienen mayor similitud con El Vergel, formando un subgrupo que a su vez, indicó similaridad con el sitio San Carlos.

^{**} Valores medios en la escala de interpretación.

^{*} Valores bajos en la escala de interpretación.

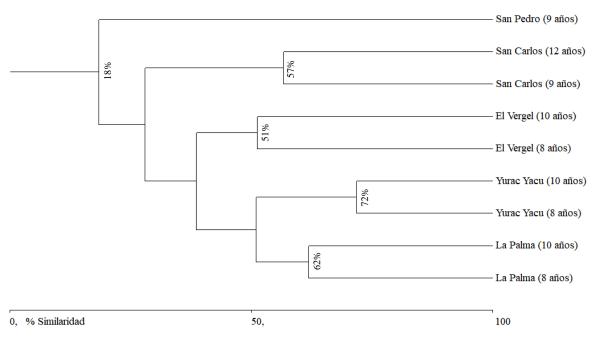

El primer grupo se conformó en su mayoría por individuos de las familias Cyperaceae, Piperaceae, Plantaginaceae, Rubiaceae y Poaceae; y con un menor número de individuos pertenecientes a las familias Euphorbiaceae, Fabaceae, Oxalidaceae, Phyllanthaceae y Violaceae. Por otra parte, el segundo grupo lo componen hierbas con mayor abundancia de *Cyperus esculentus* L. (Cyperaceae) con 3323 individuos y *Mecardonia procumbens* (Mill.) Small (Plantaginaceae) con 3174 individuos, trepadoras (Cucurbitaceae y Vitaceae), arbustos (Cleomaceae, Malvaceae, Onagraceae y Phytolaccaceae) y árboles (Lamiaceae, Malvaceae y Phyllanthaceae) (Figura 23).

Tabla 17. Matriz de índices de Jaccard calculados en función del número de individuos presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.

Jaccar	rd	La l	Palma	Yura	c Yacu	El V	ergel	San	Carlos	San Pedro
(%)		8 años	10 años	8 años	10 años	8 años	10 años	9 años	12 años	9 años
I o Dolmo	8 años	1	0,62 **	0,51 **	0,56 **	0,54 **	0,39 **	0,38 **	0,35 **	0,28 *
La Palma	10 años		1	0,51 **	0,52 **	0,44 **	0,40 **	0,30 *	0,28 *	0,25 *
Yurac Yacu	8 años			1	0,72 ***	0,50 **	0,43 **	0,30 *	0,31 *	0,25 *
Turac Tacu	10 años				1	0,48 **	0,50 **	0,35 **	0,33 *	0,26 *
El Vangel	8 años					1	0,51 **	0,30 *	0,34 **	0,28 *
El Vergel	10 años						1	0,32 *	0,33 *	0,18 *
Can Carles	9 años							1	0,57 **	0,26 *
San Carlos	12 años								1	0,31 *
San Pedro	9 años									1

^{***} Valores que representan similitud alta.

Elaborado: Autor.

Figura 23. Agrupación de los cinco sitios de estudio por edad de plantación conforme a la similaridad de especies registradas en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.

^{**} Valores que representan similitud media.

^{*} Valores que representan similitud baja.

4.3.3. Análisis de varianza por número de individuos

El análisis de varianza y posterior prueba de Tukey efectuados demostraron que, no existe diferencias significativas entre las medias de la variable número de individuos en los BSS de La Palma, Yurac Yacu, El Vergel, San Carlos y San Pedro, puesto que el valor p (0,265) de la razón F (1,25) es igual o mayor al 0,05 de probabilidad estadística (Tablas 18 y 19).

Tabla 18. Análisis de varianza por número de individuos del banco de semillas del suelo en plantaciones de teca en la zona central del litoral ecuatoriano, año 2019.

Fuente de variación	gl	Suma de cuadrados	Cuadrados medios	F	p
Factor	8	218332	27292	1,25	0,265
Error	711	15478781	21770		
Total	719	15697113			

Elaborado: Autor.

Tabla 19. Prueba de separación de medias de Tukey de acuerdo al número de individuos presentes en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.

Teches	_	La I	Palma	Yura	c Yacu	El V	ergel	San (Carlos	San Pedro
Tukey	y	8 años	10 años	8 años	10 años	8 años	10 años	9 años	12 años	9 años
La Palma	8 años		1,000 ns	0,990 ns	0,122 ns	1,000 ns	0,999 ns	0,996 ns	0,934 ns	0,997 ns
	10 años			1,000 ns	0,369 ns	1,000 ns	1,000 ns	1,000 ns	0,998 ns	1,000 ns
Yurac Yacu	8 años				0,667 ns	1,000 ns				
Yurac Yacu	10 años					0,264 ns	0,473 ns	0,572 ns	0,863 ns	0,561 ns
El Warral	8 años						1,000 ns	1,000 ns	0,990 ns	1,000 ns
El Vergel	10 años							1,000 ns	1,000 ns	1,000 ns
Con Conles	9 años								1,000 ns	1,000 ns
San Carlos	12 años									1,000 ns
San Pedro	9 años									

^{*} Valores significativos (p≤0,05).

ns Valores no significativos (p>0,05).

Elaborado: Autor.

4.4. Discusión

En el presente estudio se identificaron un total de 80 especies pertenecientes a 36 familias, donde Cyperaceae fue la que obtuvo la mayor proporción de especies registradas. Estos valores son cercanos a lo expuesto por Cifuentes *et al.* (2012) en su artículo "Arvenses asociadas a sistemas de pasturas en la zona baja del departamento del Quindío" quien encontró un número de 80 especies pertenecientes a 36 familias botánicas, entre las que destaca Cyperaceae, cuyo género *Cyperus* registró el mayor porcentaje de especies correspondiente al 23%.

De la familia Cyperaceae, la especie que registró la densidad de semillas más sobresaliente (309,78 semillas.ha⁻¹) fue *Cyperus esculentus* L., hierba perenne con un rango de distribución cosmopolita que, de acuerdo a lo descrito por Thullen y Keeley (1979) citado por Vanangamudi *et al.* (2013), en su publicación "Producción de semillas y germinación en *Cyperus esculentus* y *C. rotundus*", produjo un promedio de 1227 y 6685 flores por inflorescencia en ocho campos de California. Hasta el 17% de las flores produjo semillas y el 78% de las semillas germinaron. Por otro lado, Grichar *et al.* (2004) en su estudio "Control de Problemas de Malezas y Devoluciones Netas con Programas de Herbicidas en Maní (*Arachis hypogaea* L.) afirmaron que se propaga muy rápidamente de forma vegetativa, demostrando que, un tubérculo colocado en un campo produjo 1900 plantas, casi 7000 tubérculos, y cubrió un área de aproximadamente 2 m de diámetro en un año. Esta información permite constatar la gran capacidad de producción de semillas de esta arvense.

Los resultados de composición del BSS revelaron predominancia en abundancia de individuos de hoja ancha (59,52%) y estrategia de dispersión de semillas hemerocora (33,97%). Lo cual, no concuerda con la caracterización del BSS efectuada por Deiss *et al.* (2018) en su investigación "Banco de semillas de malezas en un sistema agroforestal con eucalipto en el Brazil Subtropical" quienes determinaron mayor abundancia de individuos de clase monocotiledónea (56,21%) y tipo de dispersión de semillas autocorica (97,42%). *Setaria parviflora* (Poaceae) que se encontraba en la posición superior de la pendiente presentó la mayor densidad relativa y se supuso entonces, que fue el resultado de los efectos del agua de lluvia lo que afectó la dispersión de las semillas depositadas en los setos.

Mollugo verticillata L. obtuvo mayor importancia ecológica en plantaciones de 8 años en Yurac Yacu registrando un IVI de 40,06%, concordando con los resultados publicados por Santos et al. (2015b) en "Caracterización fitosociológica de especies de malezas afectadas por el manejo del suelo" quienes determinaron en un sistema silvopastoril de Brachiaria sin pastoreo y Cocus nucifera, los mayores valores de IVI en profundidades del suelo de 0-5 y 5-10 cm. Se afirmó que M. verticillata es muy común en la región del noroeste de Brasil, está presente principalmente en suelo más livianos y crece continuamente durante un largo periodo del año, con un ciclo vegetativo corto.

En plantaciones de 8 años para el sitio El Vergel la especie más representativa fue *Laportea aestuans* (L) Chew con un IVI de 49,89%. Este valor es cercano al reportado por Olaniyan *et al.* (2018) en el ensayo "Las Propiedades del Suelo y la Influencia del Uso de la Tierra sobre la

Maleza en la Sabana del Sur de Nigeria" quienes obtuvieron en campos no cultivados de suelo Luvisol vértico el mayor IVI de 45,75% para esta especie. Las especies de hoja ancha fueron más abundantes que otros tipos morfológicos de malezas, dado que son más específicas en su aparición en los suelos en relación con algunas propiedades del suelo, así, su presencia se correlacionó positivamente con los altos porcentajes de limo, arcilla y sodio.

En los sitios La Palma, Yurac Yacu, El Vergel y San Carlos, el índice de Shannon-Wiever indicó diversidad media (entre 1,89 y 2,66) y el de Simpson una diversidad alta (entre 0,77 y 0,90). Por otra parte, el índice de equitatividad de Pielou reflejó que en La Palma, Yurac Yacu y El Vergel la abundancia de individuos fue más homogénea (entre 0,67 y 0,74). Santos *et al.* (2017) en su trabajo "Composición florística y estructural de plantas dañinas en agroecosistemas de várzeas en el suroeste de Tocantins" en Brasil, determinaron en sistemas de sucesión de cultivos de soja valores similares de H'=2,043, S=0,834 y J'=0,694. Estos valores fueron superiores a los del cultivo de arroz. Se concluyó que los bajos índices registrados en ese cultivo puede sugerir la ocurrencia de un número reducido de especies dominantes, lo que aumenta la presión de selección de especies tolerantes y resistentes a la aplicación de herbicidas. Además, las condiciones ambientales de inundación reducen naturalmente el número de malas hierbas, pues la mayoría de las especies no se adaptan a la presencia constante de agua.

El análisis de Jaccard reportó una similaridad media entre los sitios La Palma (0,62 x 100%), El Vergel (0,51 x 100%) y San Carlos (0,57 x 100%), lo que coincide con el estudio de Álvarez *et al.* (2014) quienes compararon los BSS en bosques tropicales estacionalmente secos de la región central de Veracruz en México y encontraron un mayor similitud (entre 0,54 y 0,59) entre los sitios sucesionales (barbecho de pasto) S2, S3 y S4. Además, el banco de semillas de los dos sitios forestales (bosque) F1 (0,38) y F2 (0,44) fue parecido entre ellos y S4 también. Sin embargo, el barbecho S1 difería de todos los demás, resultando con la mayor densidad de semillas y una menor riqueza, lo que se relacionó con historial de uso de la tierra, ya que fue deforestado hace alrededor de 100 años, su uso ha sido agrícola (cultivos de mango, papaya, frijoles y maíz) y se quema anualmente.

CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

Conforme a los resultados obtenidos en el presente estudio, se puede concluir lo siguiente:

- Se registró un total de 23041 individuos pertenecientes a 80 especies y 36 familias. Se estimó una densidad total de 1669 millones de semillas.ha⁻¹. Se observó la dominancia de hierbas (96,36%) de hoja ancha (59,52%), origen nativo (81,74%), ciclo de vida anual (49,85%) y forma de dispersión de semillas por acción antrópica (33,97%). Antes del establecimiento de las plantaciones, los sitios de estudio fueron posiblemente suelos agrícolas o de pasturas, lo que explica la alta heterogeneidad del BSS expresado en una cantidad considerable de herbáceas presentes.
- En los sitios de estudio, las especies más representativas fueron ciperáceas (Cyperus esculentus, Cyperus odoratus y Scirpus sp.) e individuos de hoja ancha (Boehmeria sp., Mollugo verticillata, Mecardonia procumbens y Laportea aestuans) que resultaron con valores de IVI altos debido principalmente a los parámetros de frecuencia y abundancia relativa obtenidos. Sin embargo, se notó poca abundancia de poaceas, quizás esto se deba a las características propias de esta familia, con especies que en su mayoría tienen un ciclo de vida anual con semillas de corta viabilidad, sin dormancia y rápida germinación que permanecen cerca de la superficie del suelo.
- La diversidad fue media (H' entre 1,09 y 2,57) y alta (S entre 0,77 y 0,90) en la mayoría de los sitios de estudio, esto condicionado por la homogeneidad en la distribución de abundancias (entre 0,69 y 0,74) de las especies presentes en los sitios La Palma, Yurac Yacu y El Vergel. El análisis clúster reflejó por su parte, mayor similaridad entre estos sitios con San Carlos (cantón Quevedo), que formaron un grupo que fue disímil florísticamente con San Pedro (cantón Balzar), diferenciándose claramente los biotipos de estudio sin importar la edad de plantación.
- De acuerdo a los resultados obtenidos del análisis de varianza calculado considerando la variable número de individuos, se rechaza la hipótesis alternativa "H₁" y acepta la hipótesis nula "H₀" de que no existe diferencia significativa en los bancos de semillas del suelo en plantaciones forestales de teca, localizadas en la zona central del litoral ecuatoriano.

5.2. Recomendaciones

- Determinar la densidad y composición del banco de semillas del suelo en plantaciones de teca recolectando muestras a mayores profundidades, a fin de complementar la información obtenida en el presente estudio.
- Realizar estudios de caracterización del banco de semillas del suelo en plantaciones de otras especies forestales de importancia comerciales en el país como *Gmelina arborea* Roxb y en áreas de bosque nativo.

CAPÍTULO VI BIBLIOGRAFÍA

6.1. Literatura Citada

- Acosta, L., y Agüero, R. (2001). El banco de propágulos de malezas en el agroecosistemas: conocimiento actual y propuesta metodológica para su estudio. *Agronomía mesoamericana*, 12(2), 141-151.
- Aguirre, Z. (2013). *Guía de métodos para medir la biodiversidad*. Universidad Nacional de Loja, Loja, Ecuador.
- Alemán, F. (2004). *Manejo de Arvenses en el Trópico*. 2a ed. Managua, Nicaragua: Universidad Nacional Agraria.
- Alemán, F., Quezada, J., y Garmendia, M. (2012). Flora arvense y ruderal del pacífico y centro de Nicaragua. Volumen 1. Managua, Nicaragua: Universidad Nacional Agraria.
- Álvarez, C., Barradas, L., Ponce, O., & Williams, G. (2014). Soil seed bank, seed removal, and germination in a seasonally dry tropical forest in Veracruz, Mexico. *Botanical Sciences*, 92(1), 111-121.
- Alvaro, L. (1998). Manual para la identificación y manejo de las principales malezas en caña de azúcar en Guatemala. Guatemala: Cengicaña.
- Alvis, J. (2009). Análisis estructural de un bosque natural localizado en zona rural del municipio de Popayán. *Biotecnología en el Sector Agropecuario y Agroindustrial*, 7(1), 115-122.
- APG III. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. *Botanical Journal of the Linnean Society*, 161(2), 105-121.
- Balbinot, R., Lambrecht, F., Breunig, F., Trautenmuller, J., Galvão, L., Denardi, L., & Vendruscolo, R. (2016). Análise fitossociológica de um fragmento de Floresta Estacional Decidual: Parque Estadual do Turvo, RS. *Pesquisa Florestal Brasileira*, 36(86), 103-113.

- Barreto, O., Guevara, R., Olguín, J., Mancilla, O., Medina, E., y Murillo, J. (2018). Macroinvertebrados de hojarasca y suelo en selva baja caducifolia y zonas perturbadas. *IDESIA (Chile)*, 36(1), 105-113.
- Bedoya, J., Estévez, J., y Castaño, G. (2010). Banco de semillas del suelo y su papel en la recuperación de los bosques tropicales. *Boletín Científico. Centro de Museos. Museo de Historia Natural*, 14(2), 77-91.
- Begley, E. (2018). *Plants of Northern California: A Field Guide to Plants West of the Sierra Nevada*. Guilford, United States: Rowman & Littlefield.
- Biondi, D., & Bobrowski, R. (2014). Utilização de índices ecológicos para análise do tratamento paisagístico arbóreo dos parques urbanos de Curitiba-PR. *Centro Científico Conhecer*, 10(18), 3006-3017.
- Blanco, Y. (2016). El rol de las arvenses como componente en la biodiversidad de los agroecosistemas. *Cultivos Tropicales*, 37(4), 34-56.
- Brink, M., & Achigan, E. (2012). *Plant Resources of Tropical Africa 16. Fibres*. Wageningen, Netherlands: PROTA Foundation.
- Briones, E., Gómez, J., Hidalgo, A., Tirira, D., y Flachier, A. (2001). Inventario de Humedales del Ecuador. Segunda Parte: Humedales Interiores de la Provincia de Guayas Tomo II. Quito, Ecuador: EcoCiencia.
- Butler, B., & Chazdon, R. (1998). Species Richness, Spatial Variation, and Abundance of the Soil Seed Bank of a Secondary Tropical Rain Forest. *Biotropica*, 30(2), 214-222.
- Caicedo, R., Guarín, K., y Perdomo, Y. (2018). Composición y diversidad del banco de semillas en áreas urbanas fragmentadas de piedemonte, Villavicencio, Colombia. *Ingenierías USBMed*, 9(1), 86-96.
- Calderón, G., y Rzedowski, J. (2004). Manual de Malezas de la Región de Salvatierra, Guanajuato. Pátzcuaro, México: Instituto de Ecología, A.C.

- Campo, A., y Duval, V. (2014). Diversidad y valor de importancia para la conservación de la vegetación natural. Parque Nacional Lihué Calel (Argentina). Anales de Geografía, 34(2), 25-42.
- Carabia, J., Meave, J., Valverde, T., y Cano, Z. (2009). *Ecología y medio ambiente en el siglo XXI*. Naucalpan de Juárez, México: Pearson Educación.
- Cardenal, Z., Torres, D., Dotor, M., y Morillo, A. (2016). Caracterización del banco activo de semillas en cultivos de zanahoria del municipio de Villa Pinzón (Cundinamarca). Revista U.D.C.A Actualidad & Divulgación Científica, 19(2), 297-306.
- Cardiel, J. (1995). Monografía N° 15: Acalypha (Euphorbiaceae). En S. Díaz, M. T. Tellería, S. Castroviejo, W. Jaramillo, P. Ruiz, y G. Lozano, *Flora de Colombia* (pp. 159). Bogotá, Colombia: Universidad Nacional de Colombia.
- Carrizo, E., y Sobrero, Y. (2001). Descripción de las especies del género *Ipomoea* presentes en el área de riego del río Dulce, Santiago del Estero, Argentina. *Planta Daninha*, 19(2), 155-161.
- Carvalho, L. (2013). Planta daninha. 1a ed. Lages, Brasil.
- Centre for Agriculture and Bioscience International (CABI). (2019). *The Invasive Species Compendium (ISC)*. Recuperado de https://www.cabi.org/ISC/.
- Chaves, A., Santos, R., Santos, J., Fernandes, A., & Maracajá, P. (2013). A importância dos levantamentos florístico e fitossociológico para a conservação e preservação das florestas. *Agropecuária Científica no Semiárido*, 9(2), 43-48.
- Cifuentes, L., Nieto, M., y Marín, G. (2012). Arvenses asociadas a sistemas de pasturas en la zona baja del departamento del Quindío. *Rev. Invest. Univ. Quindío*, 23(2), 101-111.
- De la Torre, L., Navarrete, H., Muriel, P., Macía, M, y Balslev, H. (2008). *Enciclopedia de las Plantas Útiles del Ecuador*. Quito, Ecuador: Herbario QCA y Herbario AAU.

- Deiss, L., Moraes, A., Pelissari, A., Porfírio, V., & Schuster, M. (2018). Weed seed bank in an agroforestry system with eucalyptus in Subtropical Brazil. *Planta Daninha*, 36, 1-12.
- Díaz, M., Madanes, N., Cristiano, P., y Goldstein, G. (2016). Composición del banco de semillas e invasión de *Ligustrum lucidum* en bosques costeros de la provincia de Buenos Aires, Argentina. *Bosque*, 37(3), 581-590.
- Díaz, R. (2007). Utilización de Pastizales Naturales. Córdoba, Argentina: Editorial Brujas.
- Egea, J., Mereles, F., y Céspedes, G. (2018). Malezas comunes del Paraguay; Manual de identificación. Asunción, Paraguay: Pefaur Comunicaciones.
- Favreto, R., & Medeiros, R. (2006). Banco de sementes do solo em área agrícola sob diferentes sistemas de manejo estabelecida sobre campo natural. *Revista Brasileira de Sementes*, 28(2), 34-44.
- Fernandes, A., Maracajá, P., Holanda, A., & Silveira, D. (2014). Inventário do componente arbustivo-arbóreo com potencial apícola em uma área de caatinga no município de Condado PB. *Revista Verde* (*Pombal PB Brasil*), 9(4), 27-35.
- Figueroa, J., y Jaksic, F. (2004). Latencia y banco de semillas en plantas de la región mediterránea de Chile central. *Revista chilena de historia natural*, 77(1), 201-215.
- Freitas, W., & Magalhães, L. (2012). Métodos e Parâmetros para Estudo da Vegetação com Ênfase no Estrato Arbóreo. *Floresta e Ambiente*, 19(4), 520-540.
- GAD Municipal del cantón Quevedo. (2014). *Plan de Desarrollo y Ordenamiento Territorial* 2012-2016. Quevedo, Ecuador.
- Gargiullo, M., Magnuson, B., & Kimball, L. (2008). A Field Guide to Plants of Costa Rica. New York, United States: Oxford University Press.

- Grichar, W., Lemon, R., Dotray, P., & Besler, B. (2004). Control of problem weeds and net returns with herbicide programs in peanut (*Arachis hypogaea* L.). En *Weed Biology and Management* (pp. 485-515). Springer, Dordrecht.
- Guaglianone, E. (1996). *Phytolacca rivinoides* (Phytolaccaceae), su presencia en la Argentina. *Darwiniana*, 34(1-4), 399-401.
- Hawaiian Ecosystems at Risk project (HEAR). (2019). *Plant Threats to Pacific Ecosystems*. Recuperado de http://www.hear.org/pier/scientificnames/.
- Gil, R., Malkind, S., y Mora, A. (2009). Estudio del banco de semillas de un bosque húmedo montano bajo de Mérida, Venezuela. *Pittieria*, 33, 47-58.
- Hussain, M., Ali, S., Tahir, M., Shah, G., Ahmad, I., Sarwar, M., & Latif, S. (2017). A Comparative Study of Soil Weed Seed Bank Determination in Pothwar Region by using Different Methodologies. *Pakistan Journal of Agricultural Research*, 30(4), 310-315.
- Imaña, J., Jiménez, J., Rezende, A., Imaña, C., Santana, O., y Meira, M. (2014). *Conceptos dasométricos en los inventarios fitosociológicos*. Brasília, Brasil: Universidade de Brasília.
- Instituto Nacional de Meteorología e Hidrología (INAMHI). (2018). *Anuarios meteorológicos:* 1997-2013. Quito, Ecuador.
- Jeyaprakash, K., Balachandran, N., & Kathiresan, D. (2018). *Champereia manillana* (Blume) Merr. (Opiliaceae) and *Stemodia verticillata* (Mill.) Hassl. (Plantaginaceae): New distributional records to North East India. *Bio Bulletin*, 4(2), 17-20.
- Juárez, A., Herrera, N., Martínez, J., y Reyes, M. (2016). Diversidad y estructura de la selva mediana subperennifolia de Acapulco, Gro., México. *Revista Iberoamericana de las Ciencias Biológicas y Agropecuarias*, 5(10), 1-20.

- Kalesnik, F., Sirolli, H., & Collantes, M. (2013). Seed bank composition in a secondary forest in the Lower Delta of the Paraná River (Argentina). *Acta Botanica Brasilica*, 27(1), 40-49.
- Kanieski, M., Araujo, A., & Longhi, S. (2010). Quantificação da diversidade em Floresta Ombrófila Mista por meio de diferentes Índices Alfa. *Scientia Forestalis*, 38(88), 567-577.
- Krapovickas, A, y Tolaba, J. (2008). Malvaceae Juss. Flora del Valle de Lerma, Aportes Botánicos de Salta, *Serie Flora*, 8(12), 1-107.
- Liu, F., Li, Z., Liu, Q., He, H., Liang, X., & Lai, Z. (2003). Introduction to the wild resources of the genus *Boehmeria* Jacq. in China. *Genetic Resources and Crop Evolution*, 50(8), 793-797.
- Llorente, J., y Morrone, J. (2001). *Introducción a la biogeografía en Latinoamérica: Teoría, conceptos, métodos y aplicaciones*. México, D. F., México: Facultad de Ciencias, UNAM.
- Lorenzi, H. (2000). *Plantas daninhas do Brasil: terrestres, aquáticas, parasitas, tóxicas e medicinais*. 3a ed. Nova Odessa, Brasil: Instituto Plantarum.
- Luna, R., Andrade, A., Souto, J., & Luna, J. (2018). Análise florística e fitossociológica de quatro áreas de caatinga sob diferentes densidades de caprinos no Cariri Paraibano, Brasil. *Revista Brasileira de Gestão Ambiental e Sustentabilidade*, 5(9), 191-229.
- Marcillo, J. (2014). Propuesta del híbrido de maíz (Zea mays L.) DK-7088 a la fertilización con macro y microelementos, bajo riego por goteo en el cantón Balzar-Guayas (tesis de grado), Universidad de Guayaquil, Guayaquil, Ecuador.
- Martins, F., & Santos, F. (1999). Técnicas usuais de estimativa da biodiversidade. *Revista Holos*, 1(1), 236-267.

- Melo, A. (2008). O que ganhamos 'confundindo' riqueza de espécies e equabilidade em um índice de diversidade?. *Biota Neotropica*, 8(3), 21-27.
- Mohlenbrock, R. (2005). Aquatic and Standing Water Plants of the Central Midwest. Cyperaceae: Sedges. Carbondale, United States: Southern Illinois University Press.
- Monquero, P., & Silva, A. (2007). Levantamento fitossociológico e banco de sementes das comunidades infestantes em áreas com culturas perenes. *Acta Scientiarum Agronomy*, 29(3), 315-5.
- Moreira, H., & Bragança, H. (2011). *Manual de identificação de plantas infestantes: hortifrúti*. São Paulo, Brasil: FMC Agricultural Products.
- Muñoz, D., Morales, A., y González, A. (2016). Banco de semillas germinable en la franja terrestre de dos humedales urbanos. *Colombia Forestal*, 20(1), 31-44.
- Obianefo, F., Tanee, F., Agbagwa, I., & Ochekwu, E. (2017). Evaluating Soil Seed Bank Composition and Diversity in Selected Solid Waste Dumpsites in Port Harcourt, Nigeria. *The International Journal of Science & Technology*, 5(12), 96-102.
- Olaniyan, J., Isimikalu, T., Affinnih, K., Ahamefule, H., Ajiboye, G., & Ajala, O. (2018). Soil Properties and Land-Use Influence on Weed Occurrence in the Southern Guinea Savanna of Nigeria. *Albanian Journal of Agricultural Sciences*, 17(1), 13-22.
- Organismo de Supervisión de los Recursos Forestales y de Fauna Silvestre (OSINFOR). (2016). Glosario de términos forestales y de fauna silvestre. Lima, Perú.
- Otálvaro, K., y Barrera, E. (2017). Propuesta metodológica de restauración para la vegetación riparia a partir de la variación de la composición florística en diferentes épocas climáticas del humedal Torca-Guaymaral. *Producción + Limpia*, 12(1), 49-62.
- Pederneiras, L., Costa, A., Araujo, D., y Carauta, J. (2011). Ulmaceae, Cannabaceae and Urticaceae of restingas of the state of Rio de Janeiro. *Rodriguésia*, 62(2), 299-313.

- Peres, M. (2016). Estratégias de dispersão de sementes no bioma cerrado: considerações ecológicas e filogenéticas (tesis de grado), Universidade de Brasília, Brasília, Brasíl.
- Pérez, N. (2012). *Flora de Veracruz: Cyperaceae*. (Fascículo 157). Xalapa, México: Instituto de Ecología, A. C.
- Pitty, A., y Molina, A. (1998). *Guía Fotográfica para la Identificación de Malezas: Parte II*.

 Zamorano, Honduras: Zamorano Academic Press.
- Piudo, M., y Cavero, R. (2005). Banco de semillas: comparación de Metodologías de extracción, de densidad y de Profundidad de muestreo. *Publ. Biol. Univ. Nav.*,16,71-85.
- Queiroz, W., Silva, M., Jardim, F., Vale, R., Valente, M., & Pinheiro, J. (2017). Índice de valor de importância de espécies arbóreas da Floresta Nacional do Tapajós via análises de componentes principais e de fatores. *Ciência Florestal*, *Santa Maria*, 27(1), 47-59.
- Ramachandran, A., & Soosairaj, S. (2014). *Cyperus odoratus* L. (Cyperaceae) a newly recorded Species in India. *International Journal of PharmTech Research*, 6(2), 518-520.
- Ramírez, A. (2006). *Ecología: Métodos de muestreo y análisis de poblaciones y comunidades*. Bogotá, Colombia: Editorial Pontifica Universidad Javeriana.
- Randall, R. (2017). A Global Compendium of Weeds. 3rd ed. Perth, Western Australia: R. P. Randall.
- Ribeiro, M., Andrade, L., & Pereira, W. (2016). Germination, floristic composition and phytosociology of the weed seed bank in rice interropped with corn fields. *Revista Brasileira de Ciências Agrárias*, 11(1), 14-20.
- Rodrigues, W. (2015). DIVES *Diversidade de Espécies v3.0. Guia do Usuário*, Entomologistas do Brasil.

- Romaniuc, S., Gaglioti, A., y Guido, B. (2009). Urticaceae Juss. do Parque Estadual das Fontes do Ipiranga, São Paulo, SP, Brasil. *Hoehnea*, 36(1), 193-205.
- Romero, A., Baquero, N., y Beltrán, H. (2016). Banco de semillas en áreas disturbadas de bosque subandino en San Bernardo (Cundinamarca, Colombia). *Colombia Forestal*, 19(2), 181-194.
- Santos, E., Rodrigues, A., & Santos, W. (2017). Composição florística e estrutural de plantas daninhas em agroecossistemas de várzeas no sudoeste do Tocantins. *Agri-Environmental Sciences, Palmas-TO*, 3(2), 29-39.
- Santos, M., Ferreira, E., Fonseca, D., Ferreira, L., Santos, L., & Silva, D. (2015a). Levantamento fitossociológico e produção de forragem em pasto de capim-gordura. *Revista Ceres*, *Viçosa*, 62(6), 561-567.
- Santos, R., Ferreira, E., Santos, J., Oliveira, M., Silva, D., Pereira, G., Galon, L., Aspiazu, I., & Mattos, N. (2015b). Phytosociological characterization of weed species as affected by soil management. *Australian Journal of Crop Science*, 9(2), 112-119.
- Silva, E., Lopes, S., & Miranda, J. (2015). Floristic similarity and dispersal syndromes in a rocky outcrop in semi-arid Northeastern Brazil. Revista de Biología Tropical, 63(3), 827-843.
- Silva, M., y Sales, M. (2007). *Phyllanthus* L. (Phyllanthaceae) em Pernambuco, Brasil. *Acta Botanica Brasilica*, 21(1), 79-98.
- Steinmann, V. (2005). Flora del Bajío y de regiones adyacentes: Urticaceae. (Fascículo 134). Michoacán, México: Instituto de Ecología A. C.
- Sukhorukov, A., Sennikov, A., Nilova, M., Mazei, Y., Kushunina, M., Marchioretto, M., & Hanáček, P. (2019). Evolutionary relationships and taxonomy of *Microtea* (Microteaceae), a basal lineage in the core Caryophyllales. *PhytoKeys*, (115), 1-50.

- Tapia, W. (2013). Evaluación de tres programas de fertilización foliar complementaria luego del transplante en el cultivo de maracuyá (Passiflora edulis) Var. Flavicarpa. Valencia, Los Ríos (tesis de grado), Universidad Central del Ecuador, Quito, Ecuador.
- Ter, G., Verweij, G., Bekker, R., & Bakker, J. (1996). An improved method for seed-bank analysis: seedling emergence after removing the soil by sieving. *Functional Ecology*, 10(1), 144-151.
- Tropicos.org. (2019a). *Catalogue of the Vascular Plants of Ecuador*. Missouri Botanical Garden. Recuperado de https://www.tropicos.org/NameSearch.aspx?projectid=2.
- Tropicos.org. (2019b). *Manual de Plantas de Costa Rica*. Missouri Botanical Garden. Recuperado de http://www.tropicos.org/NameSearch.aspx?projectid=66.
- Vanangamudi, K., Bhaskaran, M., Balavidhya, S., & Murali, P. (2013). *Weed Seed Biology*. Jodhpur, India: Scientific Publishers.
- Vargas, M., y Blanco, H. (2012). Efecto de prácticas de manejo del suelo sobre el banco de semillas de malezas, Guanacaste, Costa Rica. *InterSedes*, 13(26), 45-57.
- Velázquez, E., Pérez, M., y Chávez, A. (2008). El análisis de la comunidad: parámetros y evaluaciones de la diversidad biológica. *Lacandonia*, 131-139.
- Vera, A., Palacios, Z., Liuba, D., Suarez, C., y Mendoza, H. (2018). Diversidad y análisis fitosociológico de malezas en un cultivo de musáceas del trópico ecuatoriano. AgriScientia, 35(2), 43-52.
- Vibrans, H. (2009). *Malezas de México*. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Recuperado de http://www.conabio.gob.mx/ malezas demexico/2inicio/paginas/lista-plantas.htm.
- Villa, M., Marañón, T., y Arroyo, J. (2004). El banco de semillas del suelo: su papel en la regeneración del bosque mediterráneo. *Almoraima*, (31), 151-158.

- Waizel, J., y Camacho, M. (2011). El género Capsicum spp. ("chile"). Una versión panorámica.
 ALEPH ZERO: Divulgación para divulgadores. Revista de Divulgación Científica y tecnológica, 16(60), 1-13.
- Weerasinghe, A., Gunaratne, A., & Madawala, H. (2016). *Regeneration potential of different land-use types in Upper Hantana; In Sri Lanka*. Peradeniya, Sri Lanka: LAP LAMBERT Academic Publishing.
- Wilmot, C., & Friis, I. (1996). The New World species of *Boehmeria* and *Pouzolzia* (Urticaceae, tribus Boehmerieae). A taxonomic revision. *Opera Botanica*, 129, 1-103.
- Yakandawala, D., & Yakandawala, K. (2007). *Mecardonia procumbens* (Mill.) Small, an Addition to the Sri Lankan Scrophulariaceae Juss. *Cey. J. Sci* . (*Biol. Sci.*), 36(1), 61-64.
- Yang, D., & Li, W. (2013). Soil seed bank and aboveground vegetation along a successional gradient on the shores of an oxbow. *Aquatic Botany*, 110, 67-77.
- Zambrano, E. (2015). Adaptación de especies forestales de rápido crecimiento del género Paulownia a las condiciones del sitio bosque húmedo tropical en Santo Domingo (tesis de grado). Universidad Tecnológica Equinoccial, Santo Domingo, Ecuador.
- Zapata, T. (2006). *Cleome* L. (Capparaceae) en el estado Aragua, Venezuela. *Acta Botánica Venezuelica*, 29(2), 315-334.
- Zarco, V., Valdez, J., Ángeles, J., y Castillo, O. (2010). Estructura y diversidad de la vegetación arbórea del Parque Estatal Agua Blanca, Macuspana, Tabasco. *Universidad y ciencia*, 26(1), 1-17.

CAPÍTULO VII ANEXOS

Anexo 1. Hoja de registro empleada para el inventario de plántulas/plantas del banco de semillas del suelo presentes en las UM establecidas en los sitios de estudio.

HOJA DE REGISTRO N° ___ INVENTARIO DEL BANCO DE SEMILLAS DEL SUELO

Provincia:	Plantación:	N° de UM:
Cantón:	Edad (años):	Tamaño de UM (m²):
Parroquia:	Coordenadas	Forma geométrica:
Sector/Sitio:	Altitud (msnm):	Fecha de recolección:

N°	Localización (N° de SM)	Total de plántulas/plantas	Denominación	Nombre científico	Familia	Observaciones
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16			_			
17			_			
18						
19						
20						

Anexo 2. Datos del inventario del banco de semillas del suelo en plantaciones de teca de 8 años correspondiente al sitio La Palma, cantón Santo Domingo, año 2019.

N°	Total de plántulas/plantas	Denominación	Nombre científico	Familia
1	11	E19	Acalypha arvensis Poepp.	Euphorbiaceae
2	14	E31	Acalypha setosa A.Rich.	Euphorbiaceae
3	1	E35	Cyanthillium cinereum (L.) H.Rob.	Asteraceae
4	267	E3	Cyperus esculentus L.	Cyperaceae
5	2	E27	Cyperus laevigatus L.	Cyperaceae
6	112	E47	Cyperus rotundus L.	Cyperaceae
7	1	E49	Cyperus sesquiflorus (Torr.) Mattf. & Kük.	Cyperaceae
8	1	E37	Desmodium incanum DC.	Fabaceae
9	14	E63	Euphorbia graminea Jacq.	Euphorbiaceae
10	3	E59	Fimbristylis dichotoma (L.) Vahl	Cyperaceae
11	7	E60	Fimbristylis littoralis Gaudich.	Cyperaceae
12	2	E64	Ipomoea grandifolia (Dammer) O'Donell	Convolvulaceae
13	32	E56	Laportea aestuans (L.) Chew	Urticaceae
14	1	E33	Ludwigia octovalvis (Jacq.) P.H. Raven	Onagraceae
15	5	E7	Mecardonia procumbens (Mill.) Small	Plantaginaceae
16	20	E6	Microtea debilis Sw.	Microteaceae
17	40	E43	Mitracarpus hirtus (L.) DC.	Rubiaceae
18	23	E44	Oxalis barrelieri L.	Oxalidaceae
19	103	E69	Panicum trichoides Sw.	Poaceae
20	38	E40	Peperomia pellucida (L.) Kunth	Piperaceae
21	2	E20	Phyllanthus maderaspatensis L.	Phyllanthaceae
22	28	E54	Phyllanthus urinaria L.	Phyllanthaceae
23	1	E34	Phytolacca rivinoides Kunth & C.D. Bouché	Phytolaccaceae
24	9	E76	Rhynchospora radicans (Schltdl. & Cham.)	Cyperaceae
25	12	E70	Rottboellia cochinchinensis (Lour.) Clayton	Poaceae
26	2	E79	Scirpus sp.	Cyperaceae
27	9	E73	Solanum americanum Mill.	Solanaceae
28	4	E65	Spermacoce sp.	Rubiaceae
29	1	E23	Stemodia verticillata (Mill.) Hassl.	Plantaginaceae
30	13	E62	Urtica urens L.	Urticaceae
31	84	E78	Veronica persica Poir.	Plantaginaceae

Anexo 3. Datos del inventario del banco de semillas del suelo en plantaciones de teca de 10 años correspondiente al sitio La Palma, cantón Santo Domingo, año 2019.

N°	Total de plántulas/plantas	Denominación	Nombre científico	Familia
1	4	E19	Acalypha arvensis Poepp.	Euphorbiaceae
2	42	E31	Acalypha setosa A.Rich.	Euphorbiaceae
3	387	E10	Boehmeria sp.	Urticaceae
4	12	E42	Borreria latifolia (Aubl.). K. Schum	Rubiaceae
5	1	E11	Browallia americana L.	Solanaceae
6	2	E52	Cardamine hirsuta L.	Brassicaceae
7	73	E38	Cleome aculeata L.	Cleomaceae
8	5	E36	Croton lobatus L.	Euphorbiaceae
9	8	E35	Cyanthillium cinereum (L.) H.Rob.	Asteraceae
10	192	E3	Cyperus esculentus L.	Cyperaceae
11	24	E27	Cyperus laevigatus L.	Cyperaceae
12	51	E47	Cyperus rotundus L.	Cyperaceae
13	4	E49	Cyperus sesquiflorus (Torr.) Mattf. & Kük.	Cyperaceae
14	5	E32	Drymaria cordata (L.) Willd. ex Schult.	Caryophyllaceae
15	20	E63	Euphorbia graminea Jacq.	Euphorbiaceae
16	12	E59	Fimbristylis dichotoma (L.) Vahl	Cyperaceae
17	227	E60	Fimbristylis littoralis Gaudich.	Cyperaceae
18	1	E77	Galinsoga quadriradiata Ruiz & Pav.	Asteraceae
19	13	E28	Indeterminada 2	Indeterminada 2
20	9	E66	Indeterminada 5	Indeterminada 5
21	115	E56	Laportea aestuans (L.) Chew	Urticaceae
22	104	E7	Mecardonia procumbens (Mill.) Small	Plantaginaceae
23	159	E6	Microtea debilis Sw.	Microteaceae
24	13	E43	Mitracarpus hirtus (L.) DC.	Rubiaceae
25	8	E44	Oxalis barrelieri L.	Oxalidaceae
26	5	E69	Panicum trichoides Sw.	Poaceae
27	148	E40	Peperomia pellucida (L.) Kunth	Piperaceae
28	15	E54	Phyllanthus urinaria L.	Phyllanthaceae
29	23	E76	Rhynchospora radicans (Schltdl. & Cham.)	Cyperaceae
30	1	E70	Rottboellia cochinchinensis (Lour.) Clayton	Poaceae
31	1	E79	Scirpus sp.	Cyperaceae
32	2	E73	Solanum americanum Mill.	Solanaceae
33	2	E65	Spermacoce sp.	Rubiaceae
34	3	E23	Stemodia verticillata (Mill.) Hassl.	Plantaginaceae
35	4	E75	Tripogandra serrulata (Vahl) Handlos	Commelinaceae
36	16	E62	Urtica urens L.	Urticaceae
37	125	E78	Veronica persica Poir.	Plantaginaceae

Anexo 4. Datos del inventario del banco de semillas del suelo en plantaciones de teca de 8 años correspondiente al sitio Yurac Yacu, cantón Valencia, año 2019.

1 7 E50 Abutilon pauciflorum A.StHil. Malvaceae 2 133 E19 Acalypha arvensis Poepp. Euphorbiaceae 3 1 E58 Achyranthes aspera L. Amaranthaceae 4 33 E11 Browallia americana L. Solanaceae 5 10 E52 Cardamine hirsuta L. Brassicaceae 6 16 E35 Cyanthillium cinereum (L.) H.Rob. Asteraceae 7 2 E37 Desmodium incanum DC. Fabaceae 8 16 E32 Drymaria cordata (L.) Will d.ex Schult. Caryophyllaceae 9 34 E24 Eleusine indica (L.) Gaertm. Poaceae 10 2 E67 Emilia fosbergii Nicolson Asteraceae 11 5 E63 Euphorbia graminea Jacq. Euphorbiaceae 12 372 E59 Fimbristylis dichotoma (L.) Vahl Cyperaceae 13 98 E60 Fibristylis dichotoma (L.) Vahl Cyperaceae 14 29	N°	Total de plántulas/plantas	Denominación	Nombre científico	Familia
3 1 E58 Achyranthes aspera L. Amaranthaceae 4 33 E11 Browallia americana L. Solanaceae 5 10 E52 Cardamine hirsuta L. Brassicaceae 6 16 E35 Cyanthillium cinereum (L.) H.Rob. Asteraceae 7 2 E37 Desmodium incanum DC. Fabaceae 8 16 E32 Drymaria cordata (L.) Willd. ex Schult. Caryophyllaceae 9 34 E24 Eleusine indica (L.) Gaertn. Poaceae 10 2 E67 Emilia fosbergii Nicolson Asteraceae 11 5 E63 Euphorbia graminea Jacq. Euphorbiaceae 12 372 E59 Fimbristylis dichotoma (L.) Vahl Cyperaceae 14 29 E28 Indeterminada 2 Indeterminada 2 15 9 E41 Indeterminada 4 Indeterminada 4 16 67 E56 Laportea aestuans (L.) Chew Urticaceae 17 33 E33	1	7	E50	Abutilon pauciflorum A.StHil.	Malvaceae
4 33 E11 Browallia americana L. Solanaceae 5 10 E52 Cardamine hirsuta L. Brassicaceae 6 16 E35 Cyanthillium cinereum (L.) H.Rob. Asteraceae 7 2 E37 Desmodium incanum DC. Fabaceae 8 16 E32 Drymaria cordata (L.) Willd. ex Schult. Caryophyllaceae 9 34 E24 Eleusine indica (L.) Gaertn. Poaceae 10 2 E67 Emilia fosbergii Nicolson Asteraceae 11 5 E63 Euphorbia graminea Jacq. Euphorbiaceae 12 372 E59 Fimbristylis dichotoma (L.) Vahl Cyperaceae 13 98 E60 Fimbristylis dichotoma (L.) Vahl Cyperaceae 14 29 E28 Indeterminada 2 Indeterminada 2 15 9 E41 Indeterminada 2 Indeterminada 2 16 67 E56 Laportea aestuans (L.) Chew Urticaceae 17 33 E33 <td>2</td> <td>133</td> <td>E19</td> <td>Acalypha arvensis Poepp.</td> <td>Euphorbiaceae</td>	2	133	E19	Acalypha arvensis Poepp.	Euphorbiaceae
5 10 E52 Cardamine hirsuta L. Brassicaceae 6 16 E35 Cyanthillium cinereum (L.) H.Rob. Asteraceae 7 2 E37 Desmodlum incanum DC. Fabaceae 8 16 E32 Drymaria cordata (L.) Willd. ex Schult. Caryophyllaceae 9 34 E24 Eleusine indica (L.) Gaertn. Poaceae 10 2 E67 Emilia fosbergii Nicolson Asteraceae 11 5 E63 Euphorbia graminea Jacq. Euphorbiaceae 12 372 E59 Fimbristylis dichotoma (L.) Vahl Cyperaceae 13 98 E60 Fimbristylis dichotoma (L.) Vahl Cyperaceae 14 29 E28 Indeterminada 2 Indeterminada 2 15 9 E41 Indeterminada 4 Indeterminada 2 16 67 E56 Laportea aestuans (L.) Chew Urticaceae 17 33 E33 Ludwigta octovalvis (Jacq.) P.H. Raven Onagraceae 18 353	3	1	E58	Achyranthes aspera L.	Amaranthaceae
6 16 E35 Cyanthillium cinereum (L.) H.Rob. Asteraceae 7 2 E37 Desmodium incanum DC. Fabaceae 8 16 E32 Drymaria cordata (L.) Willd. ex Schult. Caryophyllaceae 9 34 E24 Eleusine indica (L.) Gaertn. Poaceae 10 2 E67 Emilia fosbergii Nicolson Asteraceae 11 5 E63 Euphorbia graminea Jacq. Euphorbiaceae 12 372 E59 Fimbristylis dichotoma (L.) Vahl Cyperaceae 13 98 E60 Fimbristylis littoralis Gaudich. Cyperaceae 14 29 E28 Indeterminada 2 Indeterminada 2 15 9 E41 Indeterminada 4 Indeterminada 4 16 67 E56 Laportea aestuans (L.) Chew Urticaceae 17 33 E33 Ludwigia octovalvis (Jacq.) P.H. Raven Onagraceae 18 353 E7 Mecardonia procumbens (Mill.) Small Plantaginaceae 20	4	33	E11	Browallia americana L.	Solanaceae
7 2 E37 Desmodium incanum DC. Fabaceae 8 16 E32 Drymaria cordata (L.) Willd. ex Schult. Caryophyllaceae 9 34 E24 Eleusine indica (L.) Gaertn. Poaceae 10 2 E67 Emilia fosbergii Nicolson Asteraceae 11 5 E63 Euphorbia graminea Jacq. Euphorbiaceae 12 372 E59 Fimbristylis dichotoma (L.) Vahl Cyperaceae 13 98 E60 Fimbristylis dichotoma (L.) Vahl Cyperaceae 14 29 E28 Indeterminada 2 Indeterminada 2 14 29 E28 Indeterminada 2 Indeterminada 4 16 67 E56 Laportea aestuans (L.) Chew Urticaceae 17 33 E33 Ludwigia octovalvis (Jacq.) P.H. Raven Onagraceae 18 353 E7 Mecardonia procumbens (Mill.) Small Plantaginaceae 19 65 E6 Microteaceae/thits Sw. Microteaceae 20 <td< td=""><td>5</td><td>10</td><td>E52</td><td>Cardamine hirsuta L.</td><td>Brassicaceae</td></td<>	5	10	E52	Cardamine hirsuta L.	Brassicaceae
8 16 E32 Drymaria cordata (L.) Willd. ex Schult. Caryophyllaceae 9 34 E24 Eleusine indica (L.) Gaertn. Poaceae 10 2 E67 Emilia fosbergii Nicolson Asteraceae 11 5 E63 Euphorbia graminea Jacq. Euphorbiaceae 12 372 E59 Fimbristylis dichotoma (L.) Vahl Cyperaceae 13 98 E60 Fimbristylis littoralis Gaudich. Cyperaceae 14 29 E28 Indeterminada 2 Indeterminada 2 15 9 E41 Indeterminada 4 Indeterminada 4 16 67 E56 Laportea aestuans (L.) Chew Urticaceae 17 33 E33 Ludwigia octovalvis (Jacq.) P.H. Raven Onagraceae 18 353 E7 Mecardonia procumbens (Mill.) Small Plantaginaceae 19 65 E6 Microtea debilis Sw. Microteaceae 20 5 E43 Miracarpus hirtus (L.) DC. Rubiaceae 21	6	16	E35	Cyanthillium cinereum (L.) H.Rob.	Asteraceae
9 34 E24 Elusine indica (L.) Gaertn. Poaceae 10 2 E67 Emilia fosbergii Nicolson Asteraceae 11 5 E63 Euphorbia graminea Jacq. Euphorbiaceae 12 372 E59 Fimbristylis dichotoma (L.) Vahl Cyperaceae 13 98 E60 Fimbristylis littoralis Gaudich. Cyperaceae 14 29 E28 Indeterminada 2 Indeterminada 2 15 9 E41 Indeterminada 4 Indeterminada 4 16 67 E56 Laportea aestuans (L.) Chew Urticaceae 17 33 E33 Ludwigia octovalvis (Jacq.) P.H. Raven Onagraceae 18 353 E7 Mecardonia procumbens (Mill.) Small Plantaginaceae 19 65 E6 Microtea debilis Sw. Microteaceae 20 5 E43 Mitracarpus hirtus (L.) DC. Rubiaceae 21 528 E13 Mollugio verticillata L. Molluginaceae 22 14	7	2	E37	Desmodium incanum DC.	Fabaceae
10 2 E67 Emilia fosbergii Nicolson Asteraceae 11 5 E63 Euphorbia graminea Jacq. Euphorbiaceae 12 372 E59 Fimbristylis dichotoma (L.) Vahl Cyperaceae 13 98 E60 Fimbristylis littoralis Gaudich. Cyperaceae 14 29 E28 Indeterminada 2 Indeterminada 2 15 9 E41 Indeterminada 4 Indeterminada 4 16 67 E56 Laportea aestuans (L.) Chew Urticaceae 17 33 E33 Ludwigia octovalvis (Jacq.) P.H. Raven Onagraceae 18 353 E7 Mecardonia procumbens (Mill.) Small Plantaginaceae 19 65 E6 Microtea debilis Sw. Microteaceae 20 5 E43 Mitracarpus hirtus (L.) DC. Rubiaceae 21 528 E13 Mollugo verticillata L. Molluginaceae 22 14 E12 Oxalis corniculata L. Oxalidaceae 23 36	8	16	E32	Drymaria cordata (L.) Willd. ex Schult.	Caryophyllaceae
11 5 E63 Euphorbia graminea Jacq. Euphorbiaceae 12 372 E59 Fimbristylis dichotoma (L.) Vahl Cyperaceae 13 98 E60 Fimbristylis littoralis Gaudich. Cyperaceae 14 29 E28 Indeterminada 2 Indeterminada 2 15 9 E41 Indeterminada 4 Indeterminada 4 16 67 E56 Laportea aestuans (L.) Chew Urticaceae 17 33 E33 Ludwigia octovalvis (Jacq.) P.H. Raven Onagraceae 18 353 E7 Mecardonia procumbens (Mill.) Small Plantaginaceae 19 65 E6 Microtea debilis Sw. Microteaceae 20 5 E43 Mitracarpus hirtus (L.) DC. Rubiaceae 21 528 E13 Mollugo verticillata L. Molluginaceae 22 14 E12 Oxalis corniculata L. Oxalidaceae 23 36 E69 Panicum trichoides Sw. Poaceae 24 133	9	34	E24	Eleusine indica (L.) Gaertn.	Poaceae
12 372 E59 Fimbristylis dichotoma (L.) Vahl Cyperaceae 13 98 E60 Fimbristylis littoralis Gaudich. Cyperaceae 14 29 E28 Indeterminada 2 Indeterminada 2 15 9 E41 Indeterminada 4 Indeterminada 4 16 67 E56 Laportea aestuans (L.) Chew Urticaceae 17 33 E33 Ludwigia octovalvis (Jacq.) P.H. Raven Onagraceae 18 353 E7 Mecardonia procumbens (Mill.) Small Plantaginaceae 19 65 E6 Microtea debilis Sw. Microteaceae 20 5 E43 Mitracarpus hirtus (L.) DC. Rubiaceae 21 528 E13 Mollugo verticillata L. Molluginaceae 22 14 E12 Oxalis corniculata L. Oxalidaceae 23 36 E69 Panicum trichoides Sw. Poaceae 24 133 E40 Peperomia pellucida (L.) Kunth Piperaceae 25 7	10	2	E67	Emilia fosbergii Nicolson	Asteraceae
13 98 E60 Fimbristylis littoralis Gaudich. Cyperaceae 14 29 E28 Indeterminada 2 Indeterminada 4 15 9 E41 Indeterminada 4 Indeterminada 4 16 67 E56 Laportea aestuans (L.) Chew Urticaceae 17 33 E33 Ludwigia octovalvis (Jacq.) P.H. Raven Onagraceae 18 353 E7 Mecardonia procumbens (Mill.) Small Plantaginaceae 19 65 E6 Microtea debilis Sw. Microteaceae 20 5 E43 Mitracarpus hirtus (L.) DC. Rubiaceae 21 528 E13 Mollugo verticillata L. Molluginaceae 22 14 E12 Oxalis corniculata L. Oxalidaceae 23 36 E69 Panicum trichoides Sw. Poaceae 24 133 E40 Peperomia pellucida (L.) Kunth Piperaceae 25 7 E20 Phyllanthus miruri L. Phyllanthaceae 27 94 E	11	5	E63	Euphorbia graminea Jacq.	Euphorbiaceae
14 29 E28 Indeterminada 2 Indeterminada 4 15 9 E41 Indeterminada 4 Indeterminada 4 16 67 E56 Laportea aestuans (L.) Chew Urticaceae 17 33 E33 Ludwigia octovalvis (Jacq.) P.H. Raven Onagraceae 18 353 E7 Mecardonia procumbens (Mill.) Small Plantaginaceae 19 65 E6 Microtea debilis Sw. Microteaceae 20 5 E43 Mitracarpus hirtus (L.) DC. Rubiaceae 21 528 E13 Mollugo verticillata L. Molluginaceae 22 14 E12 Oxalis corniculata L. Oxalidaceae 23 36 E69 Panicum trichoides Sw. Poaceae 24 133 E40 Peperomia pellucida (L.) Kunth Piperaceae 25 7 E20 Phyllanthus maderaspatensis L. Phyllanthaceae 26 5 E25 Phyllanthus urinaria L. Phyllanthaceae 27 94 <t< td=""><td>12</td><td>372</td><td>E59</td><td>Fimbristylis dichotoma (L.) Vahl</td><td>Cyperaceae</td></t<>	12	372	E59	Fimbristylis dichotoma (L.) Vahl	Cyperaceae
15 9 E41 Indeterminada 4 Indeterminada 4 16 67 E56 Laportea aestuans (L.) Chew Urticaceae 17 33 E33 Ludwigia octovalvis (Jacq.) P.H. Raven Onagraceae 18 353 E7 Mecardonia procumbens (Mill.) Small Plantaginaceae 19 65 E6 Microtea debilis Sw. Microteaceae 20 5 E43 Mitracarpus hirtus (L.) DC. Rubiaceae 21 528 E13 Mollugo verticillata L. Molluginaceae 22 14 E12 Oxalis corniculata L. Oxalidaceae 23 36 E69 Panicum trichoides Sw. Poaceae 24 133 E40 Peperomia pellucida (L.) Kunth Piperaceae 25 7 E20 Phyllanthus miruri L. Phyllanthaceae 26 5 E25 Phyllanthus urinaria L. Phyllanthaceae 27 94 E54 Phyllanthus urinaria L. Phyllanthaceae 28 61	13	98	E60	Fimbristylis littoralis Gaudich.	Cyperaceae
16 67 E56 Laportea aestuans (L.) Chew Urticaceae 17 33 E33 Ludwigia octovalvis (Jacq.) P.H. Raven Onagraceae 18 353 E7 Mecardonia procumbens (Mill.) Small Plantaginaceae 19 65 E6 Microtea debilis Sw. Microteaceae 20 5 E43 Mitracarpus hirtus (L.) DC. Rubiaceae 21 528 E13 Mollugo verticillata L. Molluginaceae 22 14 E12 Oxalis corniculata L. Oxalidaceae 23 36 E69 Panicum trichoides Sw. Poaceae 24 133 E40 Peperomia pellucida (L.) Kunth Piperaceae 25 7 E20 Phyllanthus maderaspatensis L. Phyllanthaceae 26 5 E25 Phyllanthus niruri L. Phyllanthaceae 27 94 E54 Phyllanthus urinaria L. Phyllanthaceae 28 61 E76 Rhynchospora radicans (Schltdl. & Cham.) Cyperaceae 30	14	29	E28	Indeterminada 2	Indeterminada 2
1733E33Ludwigia octovalvis (Jacq.) P.H. RavenOnagraceae18353E7Mecardonia procumbens (Mill.) SmallPlantaginaceae1965E6Microtea debilis Sw.Microteaceae205E43Mitraccarpus hirtus (L.) DC.Rubiaceae21528E13Mollugo verticillata L.Molluginaceae2214E12Oxalis corniculata L.Oxalidaceae2336E69Panicum trichoides Sw.Poaceae24133E40Peperomia pellucida (L.) KunthPiperaceae257E20Phyllanthus maderaspatensis L.Phyllanthaceae265E25Phyllanthus niruri L.Phyllanthaceae2794E54Phyllanthus urinaria L.Phyllanthaceae2861E76Rhynchospora radicans (Schltdl. & Cham.)Cyperaceae293E70Rottboellia cochinchinensis (Lour.) ClaytonPoaceae309E79Scirpus sp.Cyperaceae311E57Sida rhombifolia L.Malvaceae321E73Solanum americanum Mill.Solanaceae336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae366E62Urtica urens L.Urtica ceae	15	9	E41	Indeterminada 4	Indeterminada 4
18353E7Mecardonia procumbens (Mill.) SmallPlantaginaceae1965E6Microtea debilis Sw.Microteaceae205E43Mitracarpus hirtus (L.) DC.Rubiaceae21528E13Mollugo verticillata L.Molluginaceae2214E12Oxalis corniculata L.Oxalidaceae2336E69Panicum trichoides Sw.Poaceae24133E40Peperomia pellucida (L.) KunthPiperaceae257E20Phyllanthus maderaspatensis L.Phyllanthaceae265E25Phyllanthus niruri L.Phyllanthaceae2794E54Phyllanthus urinaria L.Phyllanthaceae2861E76Rhynchospora radicans (Schltdl. & Cham.)Cyperaceae293E70Rottboellia cochinchinensis (Lour.) ClaytonPoaceae309E79Scirpus sp.Cyperaceae311E57Sida rhombifolia L.Malvaceae321E73Solanum americanum Mill.Solanaceae336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae366E62Urtica urens L.Urticaceae	16	67	E56	Laportea aestuans (L.) Chew	Urticaceae
1965E6Microtea debilis Sw.Microteaceae205E43Mitracarpus hirtus (L.) DC.Rubiaceae21528E13Mollugo verticillata L.Molluginaceae2214E12Oxalis corniculata L.Oxalidaceae2336E69Panicum trichoides Sw.Poaceae24133E40Peperomia pellucida (L.) KunthPiperaceae257E20Phyllanthus maderaspatensis L.Phyllanthaceae265E25Phyllanthus niruri L.Phyllanthaceae2794E54Phyllanthus urinaria L.Phyllanthaceae2861E76Rhynchospora radicans (Schltdl. & Cham.)Cyperaceae293E70Rottboellia cochinchinensis (Lour.) ClaytonPoaceae309E79Scirpus sp.Cyperaceae311E57Sida rhombifolia L.Malvaceae321E73Solanum americanum Mill.Solanaceae336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae353E75Tripogandra serrulata (Vahl) HandlosCommelinaceae366E62Urtica urens L.Urticaceae	17	33	E33	Ludwigia octovalvis (Jacq.) P.H. Raven	Onagraceae
205E43Mitracarpus hirtus (L.) DC.Rubiaceae21528E13Mollugo verticillata L.Molluginaceae2214E12Oxalis corniculata L.Oxalidaceae2336E69Panicum trichoides Sw.Poaceae24133E40Peperomia pellucida (L.) KunthPiperaceae257E20Phyllanthus maderaspatensis L.Phyllanthaceae265E25Phyllanthus niruri L.Phyllanthaceae2794E54Phyllanthus urinaria L.Phyllanthaceae2861E76Rhynchospora radicans (Schltdl. & Cham.)Cyperaceae293E70Rottboellia cochinchinensis (Lour.) ClaytonPoaceae309E79Scirpus sp.Cyperaceae311E57Sida rhombifolia L.Malvaceae321E73Solanum americanum Mill.Solanaceae336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae353E75Tripogandra serrulata (Vahl) HandlosCommelinaceae366E62Urtica urens L.Urticaceae	18	353	E7	Mecardonia procumbens (Mill.) Small	Plantaginaceae
21528E13Mollugo verticillata L.Molluginaceae2214E12Oxalis corniculata L.Oxalidaceae2336E69Panicum trichoides Sw.Poaceae24133E40Peperomia pellucida (L.) KunthPiperaceae257E20Phyllanthus maderaspatensis L.Phyllanthaceae265E25Phyllanthus niruri L.Phyllanthaceae2794E54Phyllanthus urinaria L.Phyllanthaceae2861E76Rhynchospora radicans (Schltdl. & Cham.)Cyperaceae293E70Rottboellia cochinchinensis (Lour.) ClaytonPoaceae309E79Scirpus sp.Cyperaceae311E57Sida rhombifolia L.Malvaceae321E73Solanum americanum Mill.Solanaceae336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae353E75Tripogandra serrulata (Vahl) HandlosCommelinaceae366E62Urtica urens L.Urticaceae	19	65	E6	Microtea debilis Sw.	Microteaceae
2214E12Oxalis corniculata L.Oxalidaceae2336E69Panicum trichoides Sw.Poaceae24133E40Peperomia pellucida (L.) KunthPiperaceae257E20Phyllanthus maderaspatensis L.Phyllanthaceae265E25Phyllanthus niruri L.Phyllanthaceae2794E54Phyllanthus urinaria L.Phyllanthaceae2861E76Rhynchospora radicans (Schltdl. & Cham.)Cyperaceae293E70Rottboellia cochinchinensis (Lour.) ClaytonPoaceae309E79Scirpus sp.Cyperaceae311E57Sida rhombifolia L.Malvaceae321E73Solanum americanum Mill.Solanaceae336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae353E75Tripogandra serrulata (Vahl) HandlosCommelinaceae366E62Urtica urens L.Urticaceae	20	5	E43	Mitracarpus hirtus (L.) DC.	Rubiaceae
2336E69Panicum trichoides Sw.Poaceae24133E40Peperomia pellucida (L.) KunthPiperaceae257E20Phyllanthus maderaspatensis L.Phyllanthaceae265E25Phyllanthus niruri L.Phyllanthaceae2794E54Phyllanthus urinaria L.Phyllanthaceae2861E76Rhynchospora radicans (Schltdl. & Cham.)Cyperaceae293E70Rottboellia cochinchinensis (Lour.) ClaytonPoaceae309E79Scirpus sp.Cyperaceae311E57Sida rhombifolia L.Malvaceae321E73Solanum americanum Mill.Solanaceae336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae353E75Tripogandra serrulata (Vahl) HandlosCommelinaceae366E62Urtica urens L.Urticaceae	21	528	E13	Mollugo verticillata L.	Molluginaceae
24133E40Peperomia pellucida (L.) KunthPiperaceae257E20Phyllanthus maderaspatensis L.Phyllanthaceae265E25Phyllanthus niruri L.Phyllanthaceae2794E54Phyllanthus urinaria L.Phyllanthaceae2861E76Rhynchospora radicans (Schltdl. & Cham.)Cyperaceae293E70Rottboellia cochinchinensis (Lour.) ClaytonPoaceae309E79Scirpus sp.Cyperaceae311E57Sida rhombifolia L.Malvaceae321E73Solanum americanum Mill.Solanaceae336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae353E75Tripogandra serrulata (Vahl) HandlosCommelinaceae366E62Urtica urens L.Urticaceae	22	14	E12	Oxalis corniculata L.	Oxalidaceae
257E20Phyllanthus maderaspatensis L.Phyllanthaceae265E25Phyllanthus niruri L.Phyllanthaceae2794E54Phyllanthus urinaria L.Phyllanthaceae2861E76Rhynchospora radicans (Schltdl. & Cham.)Cyperaceae293E70Rottboellia cochinchinensis (Lour.) ClaytonPoaceae309E79Scirpus sp.Cyperaceae311E57Sida rhombifolia L.Malvaceae321E73Solanum americanum Mill.Solanaceae336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae353E75Tripogandra serrulata (Vahl) HandlosCommelinaceae366E62Urtica urens L.Urticaceae	23	36	E69	Panicum trichoides Sw.	Poaceae
265E25Phyllanthus niruri L.Phyllanthaceae2794E54Phyllanthus urinaria L.Phyllanthaceae2861E76Rhynchospora radicans (Schltdl. & Cham.)Cyperaceae293E70Rottboellia cochinchinensis (Lour.) ClaytonPoaceae309E79Scirpus sp.Cyperaceae311E57Sida rhombifolia L.Malvaceae321E73Solanum americanum Mill.Solanaceae336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae353E75Tripogandra serrulata (Vahl) HandlosCommelinaceae366E62Urtica urens L.Urticaceae	24	133	E40	Peperomia pellucida (L.) Kunth	Piperaceae
2794E54Phyllanthus urinaria L.Phyllanthaceae2861E76Rhynchospora radicans (Schltdl. & Cham.)Cyperaceae293E70Rottboellia cochinchinensis (Lour.) ClaytonPoaceae309E79Scirpus sp.Cyperaceae311E57Sida rhombifolia L.Malvaceae321E73Solanum americanum Mill.Solanaceae336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae353E75Tripogandra serrulata (Vahl) HandlosCommelinaceae366E62Urtica urens L.Urticaceae	25	7	E20	Phyllanthus maderaspatensis L.	Phyllanthaceae
2861E76Rhynchospora radicans (Schltdl. & Cham.)Cyperaceae293E70Rottboellia cochinchinensis (Lour.) ClaytonPoaceae309E79Scirpus sp.Cyperaceae311E57Sida rhombifolia L.Malvaceae321E73Solanum americanum Mill.Solanaceae336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae353E75Tripogandra serrulata (Vahl) HandlosCommelinaceae366E62Urtica urens L.Urticaceae	26	5	E25	Phyllanthus niruri L.	Phyllanthaceae
29 3 E70 Rottboellia cochinchinensis (Lour.) Clayton Poaceae 30 9 E79 Scirpus sp. Cyperaceae 31 1 E57 Sida rhombifolia L. Malvaceae 32 1 E73 Solanum americanum Mill. Solanaceae 33 6 E65 Spermacoce sp. Rubiaceae 34 25 E23 Stemodia verticillata (Mill.) Hassl. Plantaginaceae 35 3 E75 Tripogandra serrulata (Vahl) Handlos Commelinaceae 36 6 E62 Urtica urens L. Urticaceae	27	94	E54	Phyllanthus urinaria L.	Phyllanthaceae
309E79Scirpus sp.Cyperaceae311E57Sida rhombifolia L.Malvaceae321E73Solanum americanum Mill.Solanaceae336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae353E75Tripogandra serrulata (Vahl) HandlosCommelinaceae366E62Urtica urens L.Urticaceae	28	61	E76	Rhynchospora radicans (Schltdl. & Cham.)	Cyperaceae
31 1 E57 Sida rhombifolia L. Malvaceae 32 1 E73 Solanum americanum Mill. Solanaceae 33 6 E65 Spermacoce sp. Rubiaceae 34 25 E23 Stemodia verticillata (Mill.) Hassl. Plantaginaceae 35 3 E75 Tripogandra serrulata (Vahl) Handlos Commelinaceae 36 6 E62 Urtica urens L. Urticaceae	29	3	E70	Rottboellia cochinchinensis (Lour.) Clayton	Poaceae
311E57Sida rhombifolia L.Malvaceae321E73Solanum americanum Mill.Solanaceae336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae353E75Tripogandra serrulata (Vahl) HandlosCommelinaceae366E62Urtica urens L.Urticaceae	30	9	E79	Scirpus sp.	Cyperaceae
336E65Spermacoce sp.Rubiaceae3425E23Stemodia verticillata (Mill.) Hassl.Plantaginaceae353E75Tripogandra serrulata (Vahl) HandlosCommelinaceae366E62Urtica urens L.Urticaceae	31	1	E57	Sida rhombifolia L.	
34 25 E23 Stemodia verticillata (Mill.) Hassl. Plantaginaceae 35 3 E75 Tripogandra serrulata (Vahl) Handlos Commelinaceae 36 6 E62 Urtica urens L. Urticaceae	32	1	E73	Solanum americanum Mill.	Solanaceae
35 3 E75 Tripogandra serrulata (Vahl) Handlos Commelinaceae 36 6 E62 Urtica urens L. Urticaceae	33	6	E65	Spermacoce sp.	Rubiaceae
35 3 E75 Tripogandra serrulata (Vahl) Handlos Commelinaceae 36 6 E62 Urtica urens L. Urticaceae	34	25	E23		Plantaginaceae
	35	3	E75	Tripogandra serrulata (Vahl) Handlos	
37 422 E78 <i>Veronica persica</i> Poir. Plantaginaceae	36	6	E62		Urticaceae
	37	422	E78	Veronica persica Poir.	Plantaginaceae

Anexo 5. Datos del inventario del banco de semillas del suelo en plantaciones de teca de 10 años correspondiente al sitio Yurac Yacu, cantón Valencia, año 2019.

N°	Total de plántulas/plantas	Denominación	minación Nombre científico	
1	177	E19	Acalypha arvensis Poepp.	Euphorbiaceae
2	116	E52	Cardamine hirsuta L.	Brassicaceae
3	6	E35	Cyanthillium cinereum (L.) H.Rob.	Asteraceae
4	4	E27	Cyperus laevigatus L.	Cyperaceae
5	3	E49	Cyperus sesquiflorus (Torr.) Mattf. & Kük.	Cyperaceae
6	52	E32	Drymaria cordata (L.) Willd. ex Schult.	Caryophyllaceae
7	13	E24	Eleusine indica (L.) Gaertn.	Poaceae
8	25	E67	Emilia fosbergii Nicolson	Asteraceae
9	4	E63	Euphorbia graminea Jacq.	Euphorbiaceae
10	727	E59	Fimbristylis dichotoma (L.) Vahl	Cyperaceae
11	164	E60	Fimbristylis littoralis Gaudich.	Cyperaceae
12	159	E28	Indeterminada 2	Indeterminada 2
13	5	E41	Indeterminada 4	Indeterminada 4
14	200	E33	Ludwigia octovalvis (Jacq.) P.H. Raven	Onagraceae
15	1802	E7	Mecardonia procumbens (Mill.) Small	Plantaginaceae
16	424	E6	Microtea debilis Sw.	Microteaceae
17	29	E43	Mitracarpus hirtus (L.) DC.	Rubiaceae
18	605	E13	Mollugo verticillata L.	Molluginaceae
19	17	E12	Oxalis corniculata L.	Oxalidaceae
20	65	E69	Panicum trichoides Sw.	Poaceae
21	334	E40	Peperomia pellucida (L.) Kunth	Piperaceae
22	22	E20	Phyllanthus maderaspatensis L.	Phyllanthaceae
23	65	E54	Phyllanthus urinaria L.	Phyllanthaceae
24	1	E76	Rhynchospora radicans (Schltdl. & Cham.)	Cyperaceae
25	6	E70	Rottboellia cochinchinensis (Lour.) Clayton	Poaceae
26	5	E79	Scirpus sp.	Cyperaceae
27	7	E73	Solanum americanum Mill.	Solanaceae
28	33	E65	Spermacoce sp.	Rubiaceae
29	2	E23	Stemodia verticillata (Mill.) Hassl.	Plantaginaceae
30	975	E78	Veronica persica Poir.	Plantaginaceae

Anexo 6. Datos del inventario del banco de semillas del suelo en plantaciones de teca de 8 años correspondiente al sitio El Vergel, cantón Valencia, año 2019.

N°	Total de plántulas/plantas	Denominación	Nombre científico	Familia
1	1	E19	Acalypha arvensis Poepp.	Euphorbiaceae
2	16	E31	Acalypha setosa A.Rich.	Euphorbiaceae
3	5	E35	Cyanthillium cinereum (L.) H.Rob.	Asteraceae
4	178	E46	Cyperus odoratus L.	Cyperaceae
5	3	E47	Cyperus rotundus L.	Cyperaceae
6	1	E37	Desmodium incanum DC.	Fabaceae
7	1	E45	Dittrichia sp.	Asteraceae
8	24	E32	Drymaria cordata (L.) Willd. ex Schult.	Caryophyllaceae
9	13	E51	Eleutheranthera ruderalis (Sw.) Sch.Bip.	Asteraceae
10	4	E63	Euphorbia graminea Jacq.	Euphorbiaceae
11	99	E26	Indeterminada 1	Indeterminada 1
12	12	E28	Indeterminada 2	Indeterminada 2
13	5	E41	Indeterminada 4	Indeterminada 4
14	362	E56	Laportea aestuans (L.) Chew	Urticaceae
15	12	E33	Ludwigia octovalvis (Jacq.) P.H. Raven	Onagraceae
16	70	E7	Mecardonia procumbens (Mill.) Small	Plantaginaceae
17	75	E6	Microtea debilis Sw.	Microteaceae
18	14	E43	Mitracarpus hirtus (L.) DC.	Rubiaceae
19	1	E39	Momordica charantia L.	Cucurbitaceae
20	1	E53	Ochroma pyramidale (Cav. ex Lam.) Urb.	Malvaceae
21	222	E69	Panicum trichoides Sw.	Poaceae
22	253	E40	Peperomia pellucida (L.) Kunth	Piperaceae
23	1	E20	Phyllanthus maderaspatensis L.	Phyllanthaceae
24	17	E54	Phyllanthus urinaria L.	Phyllanthaceae
25	9	E34	Phytolacca rivinoides Kunth & C.D. Bouché	Phytolaccaceae
26	5	E70	Rottboellia cochinchinensis (Lour.) Clayton	Poaceae
27	2	E79	Scirpus sp.	Cyperaceae
28	7	E73	Solanum americanum Mill.	Solanaceae
29	35	E65	Spermacoce sp.	Rubiaceae
30	7	E23	Stemodia verticillata (Mill.) Hassl.	Plantaginaceae
31	26	E75	Tripogandra serrulata (Vahl) Handlos	Commelinaceae
32	19	E78	Veronica persica Poir.	Plantaginaceae

Anexo 7. Datos del inventario del banco de semillas del suelo en plantaciones de teca de 10 años correspondiente al sitio El Vergel, cantón Valencia, año 2019.

N°	Total de plántulas/plantas	Denominación	Nombre científico	Familia
1	67	E19	Acalypha arvensis Poepp.	Euphorbiaceae
2	5	E31	Acalypha setosa A.Rich.	Euphorbiaceae
3	37	E42	Borreria latifolia (Aubl.). K. Schum	Rubiaceae
4	1	E14	Conyza canadensis (L.) Cronquist	Asteraceae
5	3	E35	Cyanthillium cinereum (L.) H.Rob.	Asteraceae
6	728	E46	Cyperus odoratus L.	Cyperaceae
7	1	E47	Cyperus rotundus L.	Cyperaceae
8	1	E49	Cyperus sesquiflorus (Torr.) Mattf. & Kük.	Cyperaceae
9	14	E32	Drymaria cordata (L.) Willd. ex Schult.	Caryophyllaceae
10	2	E67	Emilia fosbergii Nicolson	Asteraceae
11	14	E63	Euphorbia graminea Jacq.	Euphorbiaceae
12	2	E68	Euphorbia hirta L.	Euphorbiaceae
13	32	E26	Indeterminada 1	Indeterminada 1
14	35	E28	Indeterminada 2	Indeterminada 2
15	2	E30	Indeterminada 3	Indeterminada 3
16	7	E41	Indeterminada 4	Indeterminada 4
17	137	E56	Laportea aestuans (L.) Chew	Urticaceae
18	17	E33	Ludwigia octovalvis (Jacq.) P.H. Raven	Onagraceae
19	29	E7	Mecardonia procumbens (Mill.) Small	Plantaginaceae
20	52	E6	Microtea debilis Sw.	Microteaceae
21	6	E43	Mitracarpus hirtus (L.) DC.	Rubiaceae
22	185	E13	Mollugo verticillata L.	Molluginaceae
23	3	E12	Oxalis corniculata L.	Oxalidaceae
24	53	E69	Panicum trichoides Sw.	Poaceae
25	488	E40	Peperomia pellucida (L.) Kunth	Piperaceae
26	70	E54	Phyllanthus urinaria L.	Phyllanthaceae
27	3	E70	Rottboellia cochinchinensis (Lour.) Clayton	Poaceae
28	29	E73	Solanum americanum Mill.	Solanaceae
29	4	E17	Talinum paniculatum (Jacq.) Gaertn.	Talinaceae
30	100	E78	Veronica persica Poir.	Plantaginaceae

Anexo 8. Datos del inventario del banco de semillas del suelo en plantaciones de teca de 9 años correspondiente al sitio San Carlos, cantón Quevedo, año 2019.

N°	Total de plántulas/plantas	Denominación	Nombre científico	Familia
1	1	E8	Cissus verticillata (L.) Nicolson & C.E.Jarvis	Vitaceae
2	2	E35	Cyanthillium cinereum (L.) H.Rob.	Asteraceae
3	1	E1	Cyperus sp.	Cyperaceae
4	1543	E3	Cyperus esculentus L.	Cyperaceae
5	2	E4	Cyperus iria L.	Cyperaceae
6	13	E49	Cyperus sesquiflorus (Torr.) Mattf. & Kük.	Cyperaceae
7	1	E63	Euphorbia graminea Jacq.	Euphorbiaceae
8	1	E15	Hybanthus attenuatus (Humb. & Bonpl. ex Schult.) Schulze-Menz	Violaceae
9	4	E56	Laportea aestuans (L.) Chew	Urticaceae
10	5	E33	Ludwigia octovalvis (Jacq.) P.H. Raven	Onagraceae
11	186	E7	Mecardonia procumbens (Mill.) Small	Plantaginaceae
12	10	E6	Microtea debilis Sw.	Microteaceae
13	4	E43	Mitracarpus hirtus (L.) DC.	Rubiaceae
14	14	E13	Mollugo verticillata L.	Molluginaceae
15	13	E61	Oxalis divaricata Mart. ex Zucc	Oxalidaceae
16	89	E40	Peperomia pellucida (L.) Kunth	Piperaceae
17	56	E79	Scirpus sp.	Cyperaceae
18	3	E73	Solanum americanum Mill.	Solanaceae
19	9	E23	Stemodia verticillata (Mill.) Hassl.	Plantaginaceae
20	432	E78	Veronica persica Poir.	Plantaginaceae

Anexo 9. Datos del inventario del banco de semillas del suelo en plantaciones de teca de 12 años correspondiente al sitio San Carlos, cantón Quevedo, año 2019.

N°	Total de plántulas/plantas	Denominación	Nombre científico	Familia
1	6	E42	Borreria latifolia (Aubl.). K. Schum	Rubiaceae
2	11	E16	Capsicum sp.	Solanaceae
3	1	E5	Commelina erecta L.	Commelinaceae
4	8	E35	Cyanthillium cinereum (L.) H.Rob.	Asteraceae
5	1321	E3	Cyperus esculentus L.	Cyperaceae
6	7	E4	Cyperus iria L.	Cyperaceae
7	104	E51	Eleutheranthera ruderalis (Sw.) Sch.Bip.	Asteraceae
8	3	E63	Euphorbia graminea Jacq.	Euphorbiaceae
9	14	E15	Hybanthus attenuatus (Humb. & Bonpl. ex Schult.) Schulze-Menz	Violaceae
10	175	E56	Laportea aestuans (L.) Chew	Urticaceae
11	7	E33	Ludwigia octovalvis (Jacq.) P.H. Raven	Onagraceae
12	545	E7	Mecardonia procumbens (Mill.) Small	Plantaginaceae
13	137	E6	Microtea debilis Sw.	Microteaceae
14	3	E43	Mitracarpus hirtus (L.) DC.	Rubiaceae
15	16	E13	Mollugo verticillata L.	Molluginaceae
16	1	E29	Murdannia nudiflora (L.) Brenan	Commelinaceae
17	43	E61	Oxalis divaricata Mart. ex Zucc	Oxalidaceae
18	80	E40	Peperomia pellucida (L.) Kunth	Piperaceae
19	1	E9	Phyllanthus amarus Schumach. & Thonn.	Phyllanthaceae
20	22	E20	Phyllanthus maderaspatensis L.	Phyllanthaceae
21	2	E70	Rottboellia cochinchinensis (Lour.) Clayton	Poaceae
22	92	E79	Scirpus sp.	Cyperaceae
23	22	E73	Solanum americanum Mill.	Solanaceae
24	27	E23	Stemodia verticillata (Mill.) Hassl.	Plantaginaceae
25	6	E17	Talinum paniculatum (Jacq.) Gaertn.	Talinaceae
26	1	E18	Tectona grandis L.f.	Lamiaceae
27	621	E78	Veronica persica Poir.	Plantaginaceae

Anexo 10. Datos del inventario del banco de semillas del suelo en plantaciones de teca de 9 años correspondiente al sitio San Pedro, cantón Balzar, año 2019.

1 2	3			Familia
2		E19	Acalypha arvensis Poepp.	Euphorbiaceae
	1	E31	Acalypha setosa A.Rich.	Euphorbiaceae
3	2	E2	Cyperus compressus L.	Cyperaceae
4	15	E22	Dactyloctenium aegyptium (L.) Willd.	Poaceae
5	14	E24	Eleusine indica (L.) Gaertn.	Poaceae
6	11	E51	Eleutheranthera ruderalis (Sw.) Sch.Bip.	Asteraceae
7	61	E60	Fimbristylis littoralis Gaudich.	Cyperaceae
8	1	E15	Hybanthus attenuatus (Humb. & Bonpl. ex Schult.) Schulze-Menz	Violaceae
9	23	E71	Indeterminada 6	Indeterminada 6
10	21	E72	Indeterminada 7	Indeterminada 7
11	2	E80	Indeterminada 8	Indeterminada 8
12	2	E56	Laportea aestuans (L.) Chew	Urticaceae
13	12	E48	Leptochloa filiformis (Pers.) P.Beauv.	Poaceae
14	80	E7	Mecardonia procumbens (Mill.) Small	Plantaginaceae
15	19	E43	Mitracarpus hirtus (L.) DC.	Rubiaceae
16	1	E61	Oxalis divaricata Mart. ex Zucc	Oxalidaceae
17	3	E69	Panicum trichoides Sw.	Poaceae
18	121	E40	Peperomia pellucida (L.) Kunth	Piperaceae
19	1	E9	Phyllanthus amarus Schumach. & Thonn.	Phyllanthaceae
20	4	E55	Physalis angulata L.	Solanaceae
21	1	E74	Rhynchosia minima (L.) DC.	Fabaceae
22	1831	E79	Scirpus sp.	Cyperaceae
23	19	E21	Scoparia dulcis L.	Plantaginaceae
24	2	E73	Solanum americanum Mill.	Solanaceae
25	3	E65	Spermacoce sp.	Rubiaceae
26	40	E23	Stemodia verticillata (Mill.) Hassl.	Plantaginaceae
27	3	E18	Tectona grandis L.f.	Lamiaceae
28	64	E78	Veronica persica Poir.	Plantaginaceae

Anexo 11. Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 8 años correspondiente al sitio La Palma, cantón San Domingo, año 2019.

Cyperus rotundus L.	Especie	ni	Fi	FRi	D _i *	DRi	Ai	ARi	IVI (%)
Panicum trichoides Sw. 103 1.00 5,71 6,56 11,95 25,75 9,59 27 Veronica persica Poir. 84 1.00 5,71 5,35 9,74 21,00 7,82 23 Mitracarpus hirtus (L.) DC. 40 0,75 4,29 2,55 4,64 13,33 4,97 13 Peperomia pellucida (L.) Kunth 38 1,00 5,71 2,42 4,41 9,50 3,54 13 Laportea aestuans (L.) Chew 32 1,00 5,71 2,04 3,71 8,00 2,98 12 Phyllanthus urinaria L. 28 0,75 4,29 1,78 3,25 9,33 3,48 11 Oxalis barrelieri L. 23 0,75 4,29 1,46 2,67 7,67 2,86 9 Microrea debilis Sw. 20 0,50 2,86 1,27 2,32 10,00 3,72 8 Acalypha setosa A.Rich. 14 1,00 5,71 0,89 1,62 3,50 <td>Cyperus esculentus L.</td> <td>267</td> <td>1,00</td> <td>5,71</td> <td>17,00</td> <td>30,97</td> <td>66,75</td> <td>24,86</td> <td>61,55</td>	Cyperus esculentus L.	267	1,00	5,71	17,00	30,97	66,75	24,86	61,55
Veronica persica Poir. 84 1,00 5,71 5,35 9,74 21,00 7,82 23 Mitracarpus hirtus (L.) DC. 40 0,75 4,29 2,55 4,64 13,33 4,97 13 Peperomia pellucida (L.) Kunth 38 1,00 5,71 2,42 4,41 9,50 3,54 13 Laportea aestuans (L.) Chew 32 1,00 5,71 2,04 3,71 8,00 2,98 12 Phyllanthus urinaria L. 28 0,75 4,29 1,78 3,25 9,33 3,48 11 Oxalis barrelieri L. 23 0,75 4,29 1,46 2,67 7,67 2,86 9 Microtea debilis Sw. 20 0,50 2,86 1,27 2,32 10,00 3,72 8 Acalypha setosa A.Rich. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Urica urens L. 13 0,75 4,29 0,83 1,51 4,33 <	Cyperus rotundus L.	112	0,75	4,29	7,13	12,99	37,33	13,90	31,18
Mitracarpus hirtus (L.) DC. 40 0.75 4,29 2,55 4,64 13,33 4,97 13 Peperomia pellucida (L.) Kunth 38 1,00 5,71 2,42 4,41 9,50 3,54 13 Laportea aestuans (L.) Chew 32 1,00 5,71 2,04 3,71 8,00 2,98 12 Phyllanthus urinaria L. 28 0,75 4,29 1,78 3,25 9,33 3,48 11 Oxalis barrelieri L. 23 0,75 4,29 1,46 2,67 7,67 2,86 9, Microtea debilis Sw. 20 0,50 2,86 1,27 2,32 10,00 3,72 8 Acalypha setosa A.Rich. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Urica urens L. 13 0,75 4,29 0,83 1,51 4,33 1,61 7 Rottboellia cochinchinensis (Lour.) Clayton 12 0,50 2,86 0,76 1,39 <td< td=""><td>Panicum trichoides Sw.</td><td>103</td><td>1,00</td><td>5,71</td><td>6,56</td><td>11,95</td><td>25,75</td><td>9,59</td><td>27,25</td></td<>	Panicum trichoides Sw.	103	1,00	5,71	6,56	11,95	25,75	9,59	27,25
Peperomia pellucida (L.) Kunth 38 1.00 5.71 2.42 4.41 9.50 3.54 13 Laportea aestuans (L.) Chew 32 1.00 5.71 2.04 3.71 8.00 2.98 12 Phyllanthus urinaria L. 28 0.75 4.29 1.78 3.25 9,33 3,48 11 Oxalis barrelieri L. 23 0.75 4.29 1,46 2,67 7,67 2,86 9,9 Microtea debilis Sw. 20 0,50 2,86 1,27 2,32 10,00 3,72 8 Acalypha setosa A.Rich. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Euphorbia graminea Jacq. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Urtica urens L. 13 0,75 4,29 0,83 1,51 4,33 1,61 7 Rothboellia cochinchinensis (Lour.) Clayton 12 0,50 2,86 0,76 1,39 6,	Veronica persica Poir.	84	1,00	5,71	5,35	9,74	21,00	7,82	23,28
Laportea aestuans (L.) Chew 32 1.00 5.71 2.04 3.71 8,00 2.98 12 Phyllanthus urinaria L. 28 0.75 4.29 1,78 3,25 9,33 3,48 11 Oxalis barrelieri L. 23 0.75 4.29 1,46 2,67 7,67 2,86 9 Microtea debilis Sw. 20 0.50 2,86 1,27 2,32 10,00 3,72 8 Acalypha setosa A.Rich. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Euphorbia graminea Jacq. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Urtica urens L. 13 0,75 4,29 0,83 1,51 4,33 1,61 7 Rottboellia cochinchinensis (Lour.) Clayton 12 0,50 2,86 0,76 1,39 6,00 2,23 6 Acalypha arvensis Poepp. 11 0,50 2,86 0,76 1,28 5,50	Mitracarpus hirtus (L.) DC.	40	0,75	4,29	2,55	4,64	13,33	4,97	13,89
Phyllanthus urinaria L. 28 0,75 4,29 1,78 3,25 9,33 3,48 11 Oxalis barrelieri L. 23 0,75 4,29 1,46 2,67 7,67 2,86 9 Microtea debilis Sw. 20 0,50 2,86 1,27 2,32 10,00 3,72 8 Acalypha setosa A.Rich. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Euphorbia graminea Jacq. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Urtica urens L. 13 0,75 4,29 0,83 1,51 4,33 1,61 7 Rottboellia cochinchinensis (Lour.) Clayton 12 0,50 2,86 0,76 1,39 6,00 2,23 6 Acalypha arvensis Poepp. 11 0,50 2,86 0,70 1,28 5,50 2,05 6 Solanum americanum Mill. 9 0,25 1,43 0,57 1,04 4,50	Peperomia pellucida (L.) Kunth	38	1,00	5,71	2,42	4,41	9,50	3,54	13,66
Oxalis barrelieri L. 23 0,75 4,29 1,46 2,67 7,67 2,86 9 Microtea debilis Sw. 20 0,50 2,86 1,27 2,32 10,00 3,72 8 Acalypha setosa A.Rich. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Euphorbia graminea Jacq. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Urtica urens L. 13 0,75 4,29 0,83 1,51 4,33 1,61 7 Rottboellia cochinchinensis (Lour.) Clayton 12 0,50 2,86 0,76 1,39 6,00 2,23 6 Acalypha arvensis Poepp. 11 0,50 2,86 0,76 1,39 6,00 2,23 6 Solanum americanum Mill. 9 0,25 1,43 0,57 1,04 9,00 3,35 5 Rhynchospora radicans (Schltdl. & Cham.) 9 0,50 2,86 0,57 1,04 4	Laportea aestuans (L.) Chew	32	1,00	5,71	2,04	3,71	8,00	2,98	12,41
Microtea debilis Sw. 20 0,50 2,86 1,27 2,32 10,00 3,72 8 Acalypha setosa A.Rich. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Euphorbia graminea Jacq. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Urtica urens L. 13 0,75 4,29 0,83 1,51 4,33 1,61 7 Rottboellia cochinchinensis (Lour.) Clayton 12 0,50 2,86 0,76 1,39 6,00 2,23 6 Acalypha arvensis Poepp. 11 0,50 2,86 0,70 1,28 5,50 2,05 6 Solanum americanum Mill. 9 0,25 1,43 0,57 1,04 9,00 3,35 5 Rhynchospora radicans (Schltdl. & Cham.) 9 0,50 2,86 0,57 1,04 4,50 1,68 5 Fimbristylis littoralis Gaudich. 7 0,50 2,86 0,45 0,81	Phyllanthus urinaria L.	28	0,75	4,29	1,78	3,25	9,33	3,48	11,01
Acalypha setosa A.Rich. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Euphorbia graminea Jacq. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Urtica urens L. 13 0,75 4,29 0,83 1,51 4,33 1,61 7 Rottboellia cochinchinensis (Lour.) Clayton 12 0,50 2,86 0,76 1,39 6,00 2,23 6 Acalypha arvensis Poepp. 11 0,50 2,86 0,70 1,28 5,50 2,05 6 Solanum americanum Mill. 9 0,25 1,43 0,57 1,04 9,00 3,35 5 Rhynchospora radicans (Schltdl. & Cham.) 9 0,50 2,86 0,57 1,04 4,50 1,68 5 Fimbristylis littoralis Gaudich. 7 0,50 2,86 0,45 0,81 3,50 1,30 4 Mecardonia procumbens (Mill.) Small 5 0,50 2,86 0,25 <th< td=""><td>Oxalis barrelieri L.</td><td>23</td><td>0,75</td><td>4,29</td><td>1,46</td><td>2,67</td><td>7,67</td><td>2,86</td><td>9,81</td></th<>	Oxalis barrelieri L.	23	0,75	4,29	1,46	2,67	7,67	2,86	9,81
Euphorbia graminea Jacq. 14 1,00 5,71 0,89 1,62 3,50 1,30 8 Urtica urens L. 13 0,75 4,29 0,83 1,51 4,33 1,61 7 Rottboellia cochinchinensis (Lour.) Clayton 12 0,50 2,86 0,76 1,39 6,00 2,23 6 Acalypha arvensis Poepp. 11 0,50 2,86 0,70 1,28 5,50 2,05 6 Solanum americanum Mill. 9 0,25 1,43 0,57 1,04 9,00 3,35 5 Rhynchospora radicans (Schltdl. & Cham.) 9 0,50 2,86 0,57 1,04 4,50 1,68 5 Fimbristylis littoralis Gaudich. 7 0,50 2,86 0,45 0,81 3,50 1,30 4 Mecardonia procumbens (Mill.) Small 5 0,50 2,86 0,45 0,81 3,50 1,30 4 Spermacoce sp. 4 0,50 2,86 0,25 0,46	Microtea debilis Sw.	20	0,50	2,86	1,27	2,32	10,00	3,72	8,90
Urtica urens L. 13 0,75 4,29 0,83 1,51 4,33 1,61 7. Rottboellia cochinchinensis (Lour.) Clayton 12 0,50 2,86 0,76 1,39 6,00 2,23 6. Acalypha arvensis Poepp. 11 0,50 2,86 0,70 1,28 5,50 2,05 6. Solanum americanum Mill. 9 0,25 1,43 0,57 1,04 9,00 3,35 5. Rhynchospora radicans (Schltdl. & Cham.) 9 0,50 2,86 0,57 1,04 4,50 1,68 5. Fimbristylis littoralis Gaudich. 7 0,50 2,86 0,45 0,81 3,50 1,30 4 Mecardonia procumbens (Mill.) Small 5 0,50 2,86 0,45 0,81 3,50 1,30 4 Spermacoce sp. 4 0,50 2,86 0,25 0,46 2,00 0,74 4 Fimbristylis dichotoma (L.) Vahl 3 0,50 2,86 0,19 <	Acalypha setosa A.Rich.	14	1,00	5,71	0,89	1,62	3,50	1,30	8,64
Rottboellia cochinchinensis (Lour.) Clayton 12 0,50 2,86 0,76 1,39 6,00 2,23 6,00 Acalypha arvensis Poepp. 11 0,50 2,86 0,70 1,28 5,50 2,05 6,0 Solanum americanum Mill. 9 0,25 1,43 0,57 1,04 9,00 3,35 5,5 Rhynchospora radicans (Schltdl. & Cham.) 9 0,50 2,86 0,57 1,04 4,50 1,68 5,5 Fimbristylis littoralis Gaudich. 7 0,50 2,86 0,45 0,81 3,50 1,30 4 Mecardonia procumbens (Mill.) Small 5 0,50 2,86 0,45 0,81 3,50 1,30 4 Spermacoce sp. 4 0,50 2,86 0,25 0,46 2,00 0,74 4 Fimbristylis dichotoma (L.) Vahl 3 0,50 2,86 0,19 0,35 1,50 0,56 3 Ipomoea grandifolia (Dammer) O'Donell 2 0,25 1,43	Euphorbia graminea Jacq.	14	1,00	5,71	0,89	1,62	3,50	1,30	8,64
Acalypha arvensis Poepp. 11 0,50 2,86 0,70 1,28 5,50 2,05 6 Solanum americanum Mill. 9 0,25 1,43 0,57 1,04 9,00 3,35 5 Rhynchospora radicans (Schltdl. & Cham.) 9 0,50 2,86 0,57 1,04 4,50 1,68 5 Fimbristylis littoralis Gaudich. 7 0,50 2,86 0,45 0,81 3,50 1,30 4 Mecardonia procumbens (Mill.) Small 5 0,50 2,86 0,45 0,81 3,50 1,30 4 Spermacoce sp. 4 0,50 2,86 0,32 0,58 2,50 0,93 4 Fimbristylis dichotoma (L.) Vahl 3 0,50 2,86 0,25 0,46 2,00 0,74 4 Fimbristylis dichotoma (L.) Vahl 3 0,50 2,86 0,19 0,35 1,50 0,56 3 Ipomoea grandifolia (Dammer) O'Donell 2 0,25 1,43 0,13	Urtica urens L.	13	0,75	4,29	0,83	1,51	4,33	1,61	7,41
Solanum americanum Mill. 9 0,25 1,43 0,57 1,04 9,00 3,35 5. Rhynchospora radicans (Schltdl. & Cham.) 9 0,50 2,86 0,57 1,04 4,50 1,68 5. Fimbristylis littoralis Gaudich. 7 0,50 2,86 0,45 0,81 3,50 1,30 4. Mecardonia procumbens (Mill.) Small 5 0,50 2,86 0,32 0,58 2,50 0,93 4. Spermacoce sp. 4 0,50 2,86 0,25 0,46 2,00 0,74 4. Fimbristylis dichotoma (L.) Vahl 3 0,50 2,86 0,19 0,35 1,50 0,56 3. Ipomoea grandifolia (Dammer) O'Donell 2 0,25 1,43 0,13 0,23 2,00 0,74 2. Cyperus laevigatus L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2. Scirpus sp. 2 0,25 1,43 0,13 0,23	Rottboellia cochinchinensis (Lour.) Clayton	12	0,50	2,86	0,76	1,39	6,00	2,23	6,48
Rhynchospora radicans (Schltdl. & Cham.) 9 0,50 2,86 0,57 1,04 4,50 1,68 5,50 Fimbristylis littoralis Gaudich. 7 0,50 2,86 0,45 0,81 3,50 1,30 4 Mecardonia procumbens (Mill.) Small 5 0,50 2,86 0,32 0,58 2,50 0,93 4 Spermacoce sp. 4 0,50 2,86 0,25 0,46 2,00 0,74 4 Fimbristylis dichotoma (L.) Vahl 3 0,50 2,86 0,19 0,35 1,50 0,56 3 Ipomoea grandifolia (Dammer) O'Donell 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Cyperus laevigatus L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Scirpus sp. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Phyllanthus maderaspatensis L. 2 0,25 1,43 0,13 0,23	Acalypha arvensis Poepp.	11	0,50	2,86	0,70	1,28	5,50	2,05	6,18
Fimbristylis littoralis Gaudich. 7 0,50 2,86 0,45 0,81 3,50 1,30 4 Mecardonia procumbens (Mill.) Small 5 0,50 2,86 0,32 0,58 2,50 0,93 4 Spermacoce sp. 4 0,50 2,86 0,25 0,46 2,00 0,74 4 Fimbristylis dichotoma (L.) Vahl 3 0,50 2,86 0,19 0,35 1,50 0,56 3 Ipomoea grandifolia (Dammer) O'Donell 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Cyperus laevigatus L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Scirpus sp. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Phyllanthus maderaspatensis L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Cyanthillium cinereum (L.) H.Rob. 1 0,25 1,43 0,06 0,12 <	Solanum americanum Mill.	9	0,25	1,43	0,57	1,04	9,00	3,35	5,82
Mecardonia procumbens (Mill.) Small 5 0,50 2,86 0,32 0,58 2,50 0,93 4 Spermacoce sp. 4 0,50 2,86 0,25 0,46 2,00 0,74 4 Fimbristylis dichotoma (L.) Vahl 3 0,50 2,86 0,19 0,35 1,50 0,56 3 Ipomoea grandifolia (Dammer) O'Donell 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Cyperus laevigatus L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Scirpus sp. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Phyllanthus maderaspatensis L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Cyanthillium cinereum (L.) H.Rob. 1 0,25 1,43 0,06 0,12 1,00 0,37 1 Cyperus sesquiflorus (Torr.) Mattf. & Kük. 1 0,25 1,43 0,06 0,12	Rhynchospora radicans (Schltdl. & Cham.)	9	0,50	2,86	0,57	1,04	4,50	1,68	5,58
Spermacoce sp. 4 0,50 2,86 0,25 0,46 2,00 0,74 4 Fimbristylis dichotoma (L.) Vahl 3 0,50 2,86 0,19 0,35 1,50 0,56 3 Ipomoea grandifolia (Dammer) O'Donell 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Cyperus laevigatus L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Scirpus sp. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Phyllanthus maderaspatensis L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Cyanthillium cinereum (L.) H.Rob. 1 0,25 1,43 0,06 0,12 1,00 0,37 1 Cyperus sesquiflorus (Torr.) Mattf. & Kük. 1 0,25 1,43 0,06 0,12 1,00 0,37 1 Desmodium incanum DC. 1 0,25 1,43 0,06 0,12 1	Fimbristylis littoralis Gaudich.	7	0,50	2,86	0,45	0,81	3,50	1,30	4,97
Fimbristylis dichotoma (L.) Vahl 3 0,50 2,86 0,19 0,35 1,50 0,56 3,50 Ipomoea grandifolia (Dammer) O'Donell 2 0,25 1,43 0,13 0,23 2,00 0,74 2,70 Cyperus laevigatus L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2,70 Scirpus sp. 2 0,25 1,43 0,13 0,23 2,00 0,74 2,70 Phyllanthus maderaspatensis L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2,70 Cyanthillium cinereum (L.) H.Rob. 1 0,25 1,43 0,06 0,12 1,00 0,37 1,00 Cyperus sesquiflorus (Torr.) Mattf. & Kük. 1 0,25 1,43 0,06 0,12 1,00 0,37 1,00 Desmodium incanum DC. 1 0,25 1,43 0,06 0,12 1,00 0,37 1,00	Mecardonia procumbens (Mill.) Small	5	0,50	2,86	0,32	0,58	2,50	0,93	4,37
Ipomoea grandifolia (Dammer) O'Donell 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Cyperus laevigatus L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Scirpus sp. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Phyllanthus maderaspatensis L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Cyanthillium cinereum (L.) H.Rob. 1 0,25 1,43 0,06 0,12 1,00 0,37 1 Cyperus sesquiflorus (Torr.) Mattf. & Kük. 1 0,25 1,43 0,06 0,12 1,00 0,37 1 Desmodium incanum DC. 1 0,25 1,43 0,06 0,12 1,00 0,37 1	Spermacoce sp.	4	0,50	2,86	0,25	0,46	2,00	0,74	4,07
Cyperus laevigatus L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Scirpus sp. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Phyllanthus maderaspatensis L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Cyanthillium cinereum (L.) H.Rob. 1 0,25 1,43 0,06 0,12 1,00 0,37 1 Cyperus sesquiflorus (Torr.) Mattf. & Kük. 1 0,25 1,43 0,06 0,12 1,00 0,37 1 Desmodium incanum DC. 1 0,25 1,43 0,06 0,12 1,00 0,37 1	Fimbristylis dichotoma (L.) Vahl	3	0,50	2,86	0,19	0,35	1,50	0,56	3,76
Scirpus sp. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Phyllanthus maderaspatensis L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Cyanthillium cinereum (L.) H.Rob. 1 0,25 1,43 0,06 0,12 1,00 0,37 1 Cyperus sesquiflorus (Torr.) Mattf. & Kük. 1 0,25 1,43 0,06 0,12 1,00 0,37 1 Desmodium incanum DC. 1 0,25 1,43 0,06 0,12 1,00 0,37 1	Ipomoea grandifolia (Dammer) O'Donell	2	0,25	1,43	0,13	0,23	2,00	0,74	2,41
Phyllanthus maderaspatensis L. 2 0,25 1,43 0,13 0,23 2,00 0,74 2 Cyanthillium cinereum (L.) H.Rob. 1 0,25 1,43 0,06 0,12 1,00 0,37 1 Cyperus sesquiflorus (Torr.) Mattf. & Kük. 1 0,25 1,43 0,06 0,12 1,00 0,37 1 Desmodium incanum DC. 1 0,25 1,43 0,06 0,12 1,00 0,37 1	Cyperus laevigatus L.	2	0,25	1,43	0,13	0,23	2,00	0,74	2,41
Cyanthillium cinereum (L.) H.Rob. 1 0,25 1,43 0,06 0,12 1,00 0,37 1,00 Cyperus sesquiflorus (Torr.) Mattf. & Kük. 1 0,25 1,43 0,06 0,12 1,00 0,37 1,00 Desmodium incanum DC. 1 0,25 1,43 0,06 0,12 1,00 0,37 1,00	Scirpus sp.	2	0,25	1,43	0,13	0,23	2,00	0,74	2,41
Cyperus sesquiflorus (Torr.) Mattf. & Kük. 1 0,25 1,43 0,06 0,12 1,00 0,37 1 Desmodium incanum DC. 1 0,25 1,43 0,06 0,12 1,00 0,37 1	Phyllanthus maderaspatensis L.	2	0,25	1,43	0,13	0,23	2,00	0,74	2,41
Desmodium incanum DC. 1 0,25 1,43 0,06 0,12 1,00 0,37 1,00	Cyanthillium cinereum (L.) H.Rob.	1	0,25	1,43	0,06	0,12	1,00	0,37	1,92
	Cyperus sesquiflorus (Torr.) Mattf. & Kük.	1	0,25	1,43	0,06	0,12	1,00	0,37	1,92
Ludwigia octovalvis (Jacq.) P.H. Raven 1 0,25 1,43 0,06 0,12 1,00 0,37 1,	Desmodium incanum DC.	1	0,25	1,43	0,06	0,12	1,00	0,37	1,92
	Ludwigia octovalvis (Jacq.) P.H. Raven	1	0,25	1,43	0,06	0,12	1,00	0,37	1,92
Phytolacca rivinoides Kunth & C.D. Bouché 1 0,25 1,43 0,06 0,12 1,00 0,37 1,	Phytolacca rivinoides Kunth & C.D. Bouché	1	0,25	1,43	0,06	0,12	1,00	0,37	1,92
Stemodia verticillata (Mill.) Hassl. 1 0,25 1,43 0,06 0,12 1,00 0,37 1,	Stemodia verticillata (Mill.) Hassl.	1	0,25	1,43	0,06	0,12	1,00	0,37	1,92

^{*}Valores expresados en millones.

Anexo 12. Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 10 años correspondiente al sitio La Palma, cantón San Domingo, año 2019.

Especie	n _i	Fi	FRi	D _i *	DRi	Ai	ARi	IVI (%)
Boehmeria sp.	387	0,50	2,53	24,64	21,08	193,50	26,13	49,74
Fimbristylis littoralis Gaudich.	227	0,50	2,53	14,45	12,36	113,50	15,33	30,22
Cyperus esculentus L.	192	1,00	5,06	12,22	10,46	48,00	6,48	22,00
Microtea debilis Sw.	159	0,75	3,80	10,12	8,66	53,00	7,16	19,61
Peperomia pellucida (L.) Kunth	148	1,00	5,06	9,42	8,06	37,00	5,00	18,12
Veronica persica Poir.	125	1,00	5,06	7,96	6,81	31,25	4,22	16,09
Mecardonia procumbens (Mill.) Small	104	0,50	2,53	6,62	5,66	52,00	7,02	15,22
Laportea aestuans (L.) Chew	115	1,00	5,06	7,32	6,26	28,75	3,88	15,21
Cleome aculeata L.	73	0,50	2,53	4,65	3,98	36,50	4,93	11,44
Cyperus rotundus L.	51	0,75	3,80	3,25	2,78	17,00	2,30	8,87
Acalypha setosa A.Rich.	42	1,00	5,06	2,67	2,29	10,50	1,42	8,77
Mitracarpus hirtus (L.) DC.	13	1,00	5,06	0,83	0,71	3,25	0,44	6,21
Rhynchospora radicans (Schltdl. & Cham.)	23	0,75	3,80	1,46	1,25	7,67	1,04	6,09
Euphorbia graminea Jacq.	20	0,75	3,80	1,27	1,09	6,67	0,90	5,79
Cyperus laevigatus L.	24	0,50	2,53	1,53	1,31	12,00	1,62	5,46
Phyllanthus urinaria L.	15	0,75	3,80	0,95	0,82	5,00	0,68	5,29
Urtica urens L.	16	0,50	2,53	1,02	0,87	8,00	1,08	4,48
Indeterminada 2	13	0,50	2,53	0,83	0,71	6,50	0,88	4,12
Indeterminada 5	9	0,50	2,53	0,57	0,49	4,50	0,61	3,63
Fimbristylis dichotoma (L.) Vahl	12	0,25	1,27	0,76	0,65	12,00	1,62	3,54
Borreria latifolia (Aubl.). K. Schum	12	0,25	1,27	0,76	0,65	12,00	1,62	3,54
Cyanthillium cinereum (L.) H.Rob.	8	0,50	2,53	0,51	0,44	4,00	0,54	3,51
Panicum trichoides Sw.	5	0,50	2,53	0,32	0,27	2,50	0,34	3,14
Tripogandra serrulata (Vahl) Handlos	4	0,50	2,53	0,25	0,22	2,00	0,27	3,02
Cyperus sesquiflorus (Torr.) Mattf. & Kük.	4	0,50	2,53	0,25	0,22	2,00	0,27	3,02
Acalypha arvensis Poepp.	4	0,50	2,53	0,25	0,22	2,00	0,27	3,02
Stemodia verticillata (Mill.) Hassl.	3	0,50	2,53	0,19	0,16	1,50	0,20	2,90
Oxalis barrelieri L.	8	0,25	1,27	0,51	0,44	8,00	1,08	2,78
Drymaria cordata (L.) Willd. ex Schult.	5	0,25	1,27	0,32	0,27	5,00	0,68	2,21
Croton lobatus L.	5	0,25	1,27	0,32	0,27	5,00	0,68	2,21
Cardamine hirsuta L.	2	0,25	1,27	0,13	0,11	2,00	0,27	1,64
Spermacoce sp.	2	0,25	1,27	0,13	0,11	2,00	0,27	1,64
Solanum americanum Mill.	2	0,25	1,27	0,13	0,11	2,00	0,27	1,64
Galinsoga quadriradiata Ruiz & Pav.	1	0,25	1,27	0,06	0,05	1,00	0,14	1,46
Scirpus sp.	1	0,25	1,27	0,06	0,05	1,00	0,14	1,46
Rottboellia cochinchinensis (Lour.) Clayton	1	0,25	1,27	0,06	0,05	1,00	0,14	1,46
Browallia americana L.	1	0,25	1,27	0,06	0,05	1,00	0,14	1,46

^{*}Valores expresados en millones.

Anexo 13. Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 8 años correspondiente al sitio Yurac Yacu, cantón Valencia, año 2019.

Especie	ni	Fi	FRi	D _i *	DRi	$\mathbf{A_{i}}$	ARi	IVI (%)
Mollugo verticillata L.	528	1,00	4,55	33,61	19,97	132,0	15,54	40,06
Mecardonia procumbens (Mill.) Small	353	0,50	2,27	22,47	13,35	176,5	20,78	36,40
Veronica persica Poir.	422	1,00	4,55	26,87	15,96	105,5	12,42	32,93
Fimbristylis dichotoma (L.) Vahl	372	1,00	4,55	23,68	14,07	93,00	10,95	29,56
Acalypha arvensis Poepp.	133	1,00	4,55	8,47	5,03	33,25	3,91	13,49
Peperomia pellucida (L.) Kunth	133	1,00	4,55	8,47	5,03	33,25	3,91	13,49
Fimbristylis littoralis Gaudich.	98	0,75	3,41	6,24	3,71	32,67	3,85	10,96
Phyllanthus urinaria L.	94	1,00	4,55	5,98	3,56	23,50	2,77	10,87
Laportea aestuans (L.) Chew	67	1,00	4,55	4,27	2,53	16,75	1,97	9,05
Microtea debilis Sw.	65	1,00	4,55	4,14	2,46	16,25	1,91	8,92
Rhynchospora radicans (Schltdl. & Cham.)	61	0,50	2,27	3,88	2,31	30,50	3,59	8,17
Ludwigia octovalvis (Jacq.) P.H. Raven	33	1,00	4,55	2,10	1,25	8,25	0,97	6,76
Indeterminada 2	29	1,00	4,55	1,85	1,10	7,25	0,85	6,50
Panicum trichoides Sw.	36	0,75	3,41	2,29	1,36	12,00	1,41	6,18
Eleusine indica (L.) Gaertn.	34	0,50	2,27	2,16	1,29	17,00	2,00	5,56
Browallia americana L.	33	0,50	2,27	2,10	1,25	16,50	1,94	5,46
Stemodia verticillata (Mill.) Hassl.	25	0,75	3,41	1,59	0,95	8,33	0,98	5,34
Drymaria cordata (L.) Willd. ex Schult.	16	0,75	3,41	1,02	0,61	5,33	0,63	4,64
Cyanthillium cinereum (L.) H.Rob.	16	0,50	2,27	1,02	0,61	8,00	0,94	3,82
Oxalis corniculata L.	14	0,25	1,14	0,89	0,53	14,00	1,65	3,31
Cardamine hirsuta L.	10	0,50	2,27	0,64	0,38	5,00	0,59	3,24
Indeterminada 4	9	0,50	2,27	0,57	0,34	4,50	0,53	3,14
Phyllanthus maderaspatensis L.	7	0,50	2,27	0,45	0,26	3,50	0,41	2,95
Spermacoce sp.	6	0,50	2,27	0,38	0,23	3,00	0,35	2,85
Mitracarpus hirtus (L.) DC.	5	0,50	2,27	0,32	0,19	2,50	0,29	2,76
Tripogandra serrulata (Vahl) Handlos	3	0,50	2,27	0,19	0,11	1,50	0,18	2,56
Rottboellia cochinchinensis (Lour.) Clayton	3	0,50	2,27	0,19	0,11	1,50	0,18	2,56
Scirpus sp.	9	0,25	1,14	0,57	0,34	9,00	1,06	2,54
Desmodium incanum DC.	2	0,50	2,27	0,13	0,08	1,00	0,12	2,47
Abutilon pauciflorum A.StHil.	7	0,25	1,14	0,45	0,26	7,00	0,82	2,23
Urtica urens L.	6	0,25	1,14	0,38	0,23	6,00	0,71	2,07
Euphorbia graminea Jacq.	5	0,25	1,14	0,32	0,19	5,00	0,59	1,91
Phyllanthus niruri L.	5	0,25	1,14	0,32	0,19	5,00	0,59	1,91
Emilia fosbergii Nicolson	2	0,25	1,14	0,13	0,08	2,00	0,24	1,45
Achyranthes aspera L.	1	0,25	1,14	0,06	0,04	1,00	0,12	1,29
Sida rhombifolia L.	1	0,25	1,14	0,06	0,04	1,00	0,12	1,29
Solanum americanum Mill.	1	0,25	1,14	0,06	0,04	1,00	0,12	1,29

^{*}Valores expresados en millones.

Anexo 14. Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 10 años correspondiente al sitio Yurac Yacu, cantón Valencia, año 2019.

Especie	$\mathbf{n}_{\mathbf{i}}$	$\mathbf{F_{i}}$	$\mathbf{F}\mathbf{R_{i}}$	$\mathbf{D_{i}}^{*}$	$\mathbf{DR_{i}}$	$\mathbf{A_{i}}$	$\mathbf{AR_{i}}$	IVI (%)
Mecardonia procumbens (Mill.) Small	1802	0,50	2,44	114,72	29,80	901,00	43,79	76,03
Veronica persica Poir.	975	1,00	4,88	62,07	16,12	243,75	11,85	32,85
Fimbristylis dichotoma (L.) Vahl	727	1,00	4,88	46,28	12,02	181,75	8,83	25,73
Mollugo verticillata L.	605	1,00	4,88	38,52	10,00	151,25	7,35	22,23
Microtea debilis Sw.	424	1,00	4,88	26,99	7,01	106,00	5,15	17,04
Peperomia pellucida (L.) Kunth	334	1,00	4,88	21,26	5,52	83,50	4,06	14,46
Ludwigia octovalvis (Jacq.) P.H. Raven	200	1,00	4,88	12,73	3,31	50,00	2,43	10,62
Acalypha arvensis Poepp.	177	1,00	4,88	11,27	2,93	44,25	2,15	9,96
Indeterminada 2	159	1,00	4,88	10,12	2,63	39,75	1,93	9,44
Fimbristylis littoralis Gaudich.	164	0,75	3,66	10,44	2,71	54,67	2,66	9,03
Cardamine hirsuta L.	116	0,50	2,44	7,38	1,92	58,00	2,82	7,18
Phyllanthus urinaria L.	65	1,00	4,88	4,14	1,07	16,25	0,79	6,74
Panicum trichoides Sw.	65	1,00	4,88	4,14	1,07	16,25	0,79	6,74
Drymaria cordata (L.) Willd. ex Schult.	52	1,00	4,88	3,31	0,86	13,00	0,63	6,37
Spermacoce sp.	33	0,75	3,66	2,10	0,55	11,00	0,53	4,74
Eleusine indica (L.) Gaertn.	13	0,75	3,66	0,83	0,21	4,33	0,21	4,08
Rottboellia cochinchinensis (Lour.) Clayton	6	0,75	3,66	0,38	0,10	2,00	0,10	3,85
Scirpus sp.	5	0,75	3,66	0,32	0,08	1,67	0,08	3,82
Indeterminada 4	5	0,75	3,66	0,32	0,08	1,67	0,08	3,82
Mitracarpus hirtus (L.) DC.	29	0,50	2,44	1,85	0,48	14,50	0,70	3,62
Emilia fosbergii Nicolson	25	0,50	2,44	1,59	0,41	12,50	0,61	3,46
Phyllanthus maderaspatensis L.	22	0,50	2,44	1,40	0,36	11,00	0,53	3,34
Cyanthillium cinereum (L.) H.Rob.	6	0,50	2,44	0,38	0,10	3,00	0,15	2,68
Cyperus sesquiflorus (Torr.) Mattf. & Kük.	3	0,50	2,44	0,19	0,05	1,50	0,07	2,56
Oxalis corniculata L.	17	0,25	1,22	1,08	0,28	17,00	0,83	2,33
Solanum americanum Mill.	7	0,25	1,22	0,45	0,12	7,00	0,34	1,68
Cyperus laevigatus L.	4	0,25	1,22	0,25	0,07	4,00	0,19	1,48
Euphorbia graminea Jacq.	4	0,25	1,22	0,25	0,07	4,00	0,19	1,48
Stemodia verticillata (Mill.) Hassl.	2	0,25	1,22	0,13	0,03	2,00	0,10	1,35
Rhynchospora radicans (Schltdl. & Cham.)	1	0,25	1,22	0,06	0,02	1,00	0,05	1,28

^{*}Valores expresados en millones.

Anexo 15. Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 8 años correspondiente al sitio El Vergel, cantón Valencia, año 2019.

Especie	ni	Fi	FRi	D _i *	DRi	Ai	ARi	IVI (%)
Laportea aestuans (L.) Chew	362	1,00	5,41	23,05	24,13	90,50	20,35	49,89
Peperomia pellucida (L.) Kunth	253	1,00	5,41	16,11	16,87	63,25	14,22	36,49
Panicum trichoides Sw.	222	1,00	5,41	14,13	14,80	55,50	12,48	32,68
Cyperus odoratus L.	178	1,00	5,41	11,33	11,87	44,50	10,01	27,28
Indeterminada 1	99	0,75	4,05	6,30	6,60	33,00	7,42	18,07
Microtea debilis Sw.	75	0,75	4,05	4,77	5,00	25,00	5,62	14,68
Mecardonia procumbens (Mill.) Small	70	0,75	4,05	4,46	4,67	23,33	5,25	13,97
Spermacoce sp.	35	1,00	5,41	2,23	2,33	8,75	1,97	9,71
Veronica persica Poir.	19	1,00	5,41	1,21	1,27	4,75	1,07	7,74
Drymaria cordata (L.) Willd. ex Schult.	24	0,75	4,05	1,53	1,60	8,00	1,80	7,45
Tripogandra serrulata (Vahl) Handlos	26	0,50	2,70	1,66	1,73	13,00	2,92	7,36
Phyllanthus urinaria L.	17	0,75	4,05	1,08	1,13	5,67	1,27	6,46
Acalypha setosa A.Rich.	16	0,75	4,05	1,02	1,07	5,33	1,20	6,32
Mitracarpus hirtus (L.) DC.	14	0,75	4,05	0,89	0,93	4,67	1,05	6,04
Eleutheranthera ruderalis (Sw.) Sch.Bip.	13	0,75	4,05	0,83	0,87	4,33	0,97	5,90
Indeterminada 2	12	0,50	2,70	0,76	0,80	6,00	1,35	4,85
Ludwigia octovalvis (Jacq.) P.H. Raven	12	0,50	2,70	0,76	0,80	6,00	1,35	4,85
Rottboellia cochinchinensis (Lour.) Clayton	5	0,75	4,05	0,32	0,33	1,67	0,37	4,76
Phytolacca rivinoides Kunth & C.D. Bouché	9	0,25	1,35	0,57	0,60	9,00	2,02	3,97
Solanum americanum Mill.	7	0,50	2,70	0,45	0,47	3,50	0,79	3,96
Euphorbia graminea Jacq.	4	0,50	2,70	0,25	0,27	2,00	0,45	3,42
Stemodia verticillata (Mill.) Hassl.	7	0,25	1,35	0,45	0,47	7,00	1,57	3,39
Scirpus sp.	2	0,50	2,70	0,13	0,13	1,00	0,22	3,06
Cyanthillium cinereum (L.) H.Rob.	5	0,25	1,35	0,32	0,33	5,00	1,12	2,81
Indeterminada 4	5	0,25	1,35	0,32	0,33	5,00	1,12	2,81
Cyperus rotundus L.	3	0,25	1,35	0,19	0,20	3,00	0,67	2,23
Dittrichia sp.	1	0,25	1,35	0,06	0,07	1,00	0,22	1,64
Momordica charantia L.	1	0,25	1,35	0,06	0,07	1,00	0,22	1,64
Acalypha arvensis Poepp.	1	0,25	1,35	0,06	0,07	1,00	0,22	1,64
Desmodium incanum DC.	1	0,25	1,35	0,06	0,07	1,00	0,22	1,64
Ochroma pyramidale (Cav. ex Lam.) Urb.	1	0,25	1,35	0,06	0,07	1,00	0,22	1,64
Phyllanthus maderaspatensis L.	1	0,25	1,35	0,06	0,07	1,00	0,22	1,64

^{*}Valores expresados en millones.

Anexo 16. Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 10 años correspondiente al sitio El Vergel, cantón Valencia, año 2019.

Especie	ni	$\mathbf{F}_{\mathbf{i}}$	$\mathbf{F}\mathbf{R_{i}}$	D _i *	DRi	$\mathbf{A_{i}}$	ARi	IVI (%)
Cyperus odoratus L.	728	1,00	5,19	46,35	34,23	182,00	30,58	70,00
Peperomia pellucida (L.) Kunth	488	1,00	5,19	31,07	22,94	122,00	20,50	48,64
Mollugo verticillata L.	185	0,75	3,90	11,78	8,70	61,67	10,36	22,96
Laportea aestuans (L.) Chew	137	1,00	5,19	8,72	6,44	34,25	5,75	17,39
Veronica persica Poir.	100	1,00	5,19	6,37	4,70	25,00	4,20	14,10
Phyllanthus urinaria L.	70	1,00	5,19	4,46	3,29	17,50	2,94	11,43
Acalypha arvensis Poepp.	67	1,00	5,19	4,27	3,15	16,75	2,81	11,16
Panicum trichoides Sw.	53	1,00	5,19	3,37	2,49	13,25	2,23	9,91
Microtea debilis Sw.	52	1,00	5,19	3,31	2,44	13,00	2,18	9,82
Solanum americanum Mill.	29	1,00	5,19	1,85	1,36	7,25	1,22	7,78
Borreria latifolia (Aubl.). K. Schum	37	0,75	3,90	2,36	1,74	12,33	2,07	7,71
Indeterminada 2	35	0,75	3,90	2,23	1,65	11,67	1,96	7,50
Indeterminada 1	32	0,50	2,60	2,04	1,50	16,00	2,69	6,79
Drymaria cordata (L.) Willd. ex Schult.	14	1,00	5,19	0,89	0,66	3,50	0,59	6,44
Euphorbia graminea Jacq.	14	1,00	5,19	0,89	0,66	3,50	0,59	6,44
Mecardonia procumbens (Mill.) Small	29	0,50	2,60	1,85	1,36	14,50	2,44	6,40
Ludwigia octovalvis (Jacq.) P.H. Raven	17	0,50	2,60	1,08	0,80	8,50	1,43	4,82
Oxalis corniculata L.	3	0,75	3,90	0,19	0,14	1,00	0,17	4,21
Acalypha setosa A.Rich.	5	0,50	2,60	0,32	0,24	2,50	0,42	3,25
Cyanthillium cinereum (L.) H.Rob.	3	0,50	2,60	0,19	0,14	1,50	0,25	2,99
Rottboellia cochinchinensis (Lour.) Clayton	3	0,50	2,60	0,19	0,14	1,50	0,25	2,99
Indeterminada 4	7	0,25	1,30	0,45	0,33	7,00	1,18	2,80
Mitracarpus hirtus (L.) DC.	6	0,25	1,30	0,38	0,28	6,00	1,01	2,59
Talinum paniculatum (Jacq.) Gaertn.	4	0,25	1,30	0,25	0,19	4,00	0,67	2,16
Emilia fosbergii Nicolson	2	0,25	1,30	0,13	0,09	2,00	0,34	1,73
Euphorbia hirta L.	2	0,25	1,30	0,13	0,09	2,00	0,34	1,73
Indeterminada 3	2	0,25	1,30	0,13	0,09	2,00	0,34	1,73
Conyza canadensis (L.) Cronquist	1	0,25	1,30	0,06	0,05	1,00	0,17	1,51
Cyperus rotundus L.	1	0,25	1,30	0,06	0,05	1,00	0,17	1,51
Cyperus sesquiflorus (Torr.) Mattf. & Kük. *Valores expresados en millones.	1	0,25	1,30	0,06	0,05	1,00	0,17	1,51

^{*}Valores expresados en millones.

Anexo 17. Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 9 años correspondiente al sitio San Carlos, cantón Quevedo, año 2019.

Especie	ni	Fi	FRi	D _i *	DRi	Ai	ARi	IVI (%)
Cyperus esculentus L.	1543	1,00	6,45	196,46	64,59	771,50	63,63	134,67
Veronica persica Poir.	432	1,00	6,45	55,00	18,08	216,00	17,81	42,35
Mecardonia procumbens (Mill.) Small	186	1,00	6,45	23,68	7,79	93,00	7,67	21,91
Peperomia pellucida (L.) Kunth	89	1,00	6,45	11,33	3,73	44,50	3,67	13,85
Scirpus sp.	56	1,00	6,45	7,13	2,34	28,00	2,31	11,10
Mollugo verticillata L.	14	1,00	6,45	1,78	0,59	7,00	0,58	7,61
Oxalis divaricata Mart. ex Zucc	13	1,00	6,45	1,66	0,54	6,50	0,54	7,53
Stemodia verticillata (Mill.) Hassl.	9	1,00	6,45	1,15	0,38	4,50	0,37	7,20
Mitracarpus hirtus (L.) DC.	4	1,00	6,45	0,51	0,17	2,00	0,16	6,78
Laportea aestuans (L.) Chew	4	1,00	6,45	0,51	0,17	2,00	0,16	6,78
Solanum americanum Mill.	3	1,00	6,45	0,38	0,13	1,50	0,12	6,70
Cyperus sesquiflorus (Torr.) Mattf. & Kük.	13	0,50	3,23	1,66	0,54	13,00	1,07	4,84
Microtea debilis Sw.	10	0,50	3,23	1,27	0,42	10,00	0,82	4,47
Ludwigia octovalvis (Jacq.) P.H. Raven	5	0,50	3,23	0,64	0,21	5,00	0,41	3,85
Cyanthillium cinereum (L.) H.Rob.	2	0,50	3,23	0,25	0,08	2,00	0,16	3,47
Cyperus iria L.	2	0,50	3,23	0,25	0,08	2,00	0,16	3,47
Cyperus sp.	1	0,50	3,23	0,13	0,04	1,00	0,08	3,35
Euphorbia graminea Jacq.	1	0,50	3,23	0,13	0,04	1,00	0,08	3,35
Hybanthus attenuatus (Humb. & Bonpl. ex Schult.) Schulze-Menz	1	0,50	3,23	0,13	0,04	1,00	0,08	3,35
Cissus verticillata (L.) Nicolson & C.E.Jarvis	1	0,50	3,23	0,13	0,04	1,00	0,08	3,35

^{*}Valores expresados en millones.

Anexo 18. Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 12 años correspondiente al sitio San Carlos, cantón Quevedo, año 2019.

Especie	ni	$\mathbf{F}_{\mathbf{i}}$	$\mathbf{F}\mathbf{R}_{\mathbf{i}}$	$\mathbf{D_{i}}^{*}$	DRi	$\mathbf{A}_{\mathbf{i}}$	ARi	IVI (%)
Cyperus esculentus L.	1321	1,00	6,06	84,10	40,32	330,25	34,85	81,24
Veronica persica Poir.	621	1,00	6,06	39,53	18,96	155,25	16,38	41,40
Mecardonia procumbens (Mill.) Small	545	0,75	4,55	34,70	16,64	181,67	19,17	40,35
Laportea aestuans (L.) Chew	175	1,00	6,06	11,14	5,34	43,75	4,62	16,02
Microtea debilis Sw.	137	0,75	4,55	8,72	4,18	45,67	4,82	13,55
Eleutheranthera ruderalis (Sw.) Sch.Bip.	104	1,00	6,06	6,62	3,17	26,00	2,74	11,98
Scirpus sp.	92	1,00	6,06	5,86	2,81	23,00	2,43	11,30
Peperomia pellucida (L.) Kunth	80	0,75	4,55	5,09	2,44	26,67	2,81	9,80
Oxalis divaricata Mart. ex Zucc	43	0,25	1,52	2,74	1,31	43,00	4,54	7,37
Solanum americanum Mill.	22	1,00	6,06	1,40	0,67	5,50	0,58	7,31
Stemodia verticillata (Mill.) Hassl.	27	0,75	4,55	1,72	0,82	9,00	0,95	6,32
Mollugo verticillata L.	16	0,75	4,55	1,02	0,49	5,33	0,56	5,60
<i>Hybanthus attenuatus</i> (Humb. & Bonpl. ex Schult.) Schulze-Menz	14	0,75	4,55	0,89	0,43	4,67	0,49	5,47
Capsicum sp.	11	0,75	4,55	0,70	0,34	3,67	0,39	5,27
Cyanthillium cinereum (L.) H.Rob.	8	0,75	4,55	0,51	0,24	2,67	0,28	5,07
Phyllanthus maderaspatensis L.	22	0,50	3,03	1,40	0,67	11,00	1,16	4,86
Ludwigia octovalvis (Jacq.) P.H. Raven	7	0,50	3,03	0,45	0,21	3,50	0,37	3,61
Euphorbia graminea Jacq.	3	0,50	3,03	0,19	0,09	1,50	0,16	3,28
Mitracarpus hirtus (L.) DC.	3	0,50	3,03	0,19	0,09	1,50	0,16	3,28
Rottboellia cochinchinensis (Lour.) Clayton	2	0,50	3,03	0,13	0,06	1,00	0,11	3,20
Cyperus iria L.	7	0,25	1,52	0,45	0,21	7,00	0,74	2,47
Borreria latifolia (Aubl.). K. Schum	6	0,25	1,52	0,38	0,18	6,00	0,63	2,33
Talinum paniculatum (Jacq.) Gaertn.	6	0,25	1,52	0,38	0,18	6,00	0,63	2,33
Commelina erecta L.	1	0,25	1,52	0,06	0,03	1,00	0,11	1,65
Murdannia nudiflora (L.) Brenan	1	0,25	1,52	0,06	0,03	1,00	0,11	1,65
Tectona grandis L.f.	1	0,25	1,52	0,06	0,03	1,00	0,11	1,65
Phyllanthus amarus Schumach. & Thonn.	1	0,25	1,52	0,06	0,03	1,00	0,11	1,65

^{*}Valores expresados en millones.

Anexo 19. Datos de frecuencia, densidad y abundancia (absoluta y relativa) e índice de valor de importancia (IVI) de especies del banco de semillas del suelo en plantaciones de teca de 9 años correspondiente al sitio San Pedro, cantón Balzar, año 2019.

ni	Fi	FR_i	D _i *	$\mathbf{DR_{i}}$	$\mathbf{A}_{\mathbf{i}}$	ARi	IVI (%)
1831	1,00	5,26	155,42	77,58	610,33	74,16	157,01
121	1,00	5,26	10,27	5,13	40,33	4,90	15,29
80	1,00	5,26	6,79	3,39	26,67	3,24	11,89
64	1,00	5,26	5,43	2,71	21,33	2,59	10,57
61	0,67	3,51	5,18	2,58	30,50	3,71	9,80
40	1,00	5,26	3,40	1,69	13,33	1,62	8,58
19	1,00	5,26	1,61	0,81	6,33	0,77	6,84
19	1,00	5,26	1,61	0,81	6,33	0,77	6,84
15	1,00	5,26	1,27	0,64	5,00	0,61	6,51
14	1,00	5,26	1,19	0,59	4,67	0,57	6,42
11	1,00	5,26	0,93	0,47	3,67	0,45	6,17
23	0,67	3,51	1,95	0,97	11,50	1,40	5,88
21	0,67	3,51	1,78	0,89	10,50	1,28	5,67
4	0,67	3,51	0,34	0,17	2,00	0,24	3,92
3	0,67	3,51	0,25	0,13	1,50	0,18	3,82
3	0,67	3,51	0,25	0,13	1,50	0,18	3,82
3	0,67	3,51	0,25	0,13	1,50	0,18	3,82
12	0,33	1,75	1,02	0,51	12,00	1,46	3,72
2	0,67	3,51	0,17	0,08	1,00	0,12	3,72
2	0,67	3,51	0,17	0,08	1,00	0,12	3,72
3	0,33	1,75	0,25	0,13	3,00	0,36	2,25
2	0,33	1,75	0,17	0,08	2,00	0,24	2,08
2	0,33	1,75	0,17	0,08	2,00	0,24	2,08
1	0,33	1,75	0,08	0,04	1,00	0,12	1,92
1	0,33	1,75	0,08	0,04	1,00	0,12	1,92
1	0,33	1,75	0,08	0,04	1,00	0,12	1,92
1	0,33	1,75	0,08	0,04	1,00	0,12	1,92
1	0,33	1,75	0,08	0,04	1,00	0,12	1,92
	121 80 64 61 40 19 15 14 11 23 21 4 3 3 3 12 2 2 2 1 1 1	121 1,00 80 1,00 64 1,00 61 0,67 40 1,00 19 1,00 19 1,00 15 1,00 14 1,00 23 0,67 21 0,67 4 0,67 3 0,67 3 0,67 3 0,67 12 0,33 2 0,67 2 0,67 2 0,67 2 0,33 2 0,33 1 0,33 1 0,33 1 0,33 1 0,33	121 1,00 5,26 80 1,00 5,26 64 1,00 5,26 61 0,67 3,51 40 1,00 5,26 19 1,00 5,26 19 1,00 5,26 15 1,00 5,26 14 1,00 5,26 11 1,00 5,26 11 1,00 5,26 11 1,00 5,26 12 0,67 3,51 21 0,67 3,51 3 0,67 3,51 3 0,67 3,51 3 0,67 3,51 3 0,67 3,51 2 0,67 3,51 2 0,67 3,51 3 0,33 1,75 2 0,33 1,75 2 0,33 1,75 1 0,33 1,75 1 0,33 <td< td=""><td>121 1,00 5,26 10,27 80 1,00 5,26 6,79 64 1,00 5,26 5,43 61 0,67 3,51 5,18 40 1,00 5,26 3,40 19 1,00 5,26 1,61 19 1,00 5,26 1,61 15 1,00 5,26 1,27 14 1,00 5,26 1,27 14 1,00 5,26 1,27 14 1,00 5,26 1,93 23 0,67 3,51 1,95 21 0,67 3,51 1,78 4 0,67 3,51 0,25 3 0,67 3,51 0,25 3 0,67 3,51 0,25 3 0,67 3,51 0,25 3 0,67 3,51 0,25 3 0,67 3,51 0,17 2 0,67</td><td>121 1,00 5,26 10,27 5,13 80 1,00 5,26 6,79 3,39 64 1,00 5,26 5,43 2,71 61 0,67 3,51 5,18 2,58 40 1,00 5,26 3,40 1,69 19 1,00 5,26 1,61 0,81 19 1,00 5,26 1,61 0,81 15 1,00 5,26 1,27 0,64 14 1,00 5,26 1,19 0,59 11 1,00 5,26 1,19 0,59 11 1,00 5,26 0,93 0,47 23 0,67 3,51 1,78 0,89 4 0,67 3,51 1,78 0,89 4 0,67 3,51 0,25 0,13 3 0,67 3,51 0,25 0,13 12 0,33 1,75 1,02 0,51</td><td>121 1,00 5,26 10,27 5,13 40,33 80 1,00 5,26 6,79 3,39 26,67 64 1,00 5,26 5,43 2,71 21,33 61 0,67 3,51 5,18 2,58 30,50 40 1,00 5,26 3,40 1,69 13,33 19 1,00 5,26 1,61 0,81 6,33 19 1,00 5,26 1,61 0,81 6,33 15 1,00 5,26 1,27 0,64 5,00 14 1,00 5,26 1,19 0,59 4,67 11 1,00 5,26 0,93 0,47 3,67 23 0,67 3,51 1,95 0,97 11,50 21 0,67 3,51 1,78 0,89 10,50 4 0,67 3,51 0,25 0,13 1,50 3 0,67 3,51 0,25</td><td>121 1,00 5,26 10,27 5,13 40,33 4,90 80 1,00 5,26 6,79 3,39 26,67 3,24 64 1,00 5,26 5,43 2,71 21,33 2,59 61 0,67 3,51 5,18 2,58 30,50 3,71 40 1,00 5,26 3,40 1,69 13,33 1,62 19 1,00 5,26 1,61 0,81 6,33 0,77 19 1,00 5,26 1,61 0,81 6,33 0,77 15 1,00 5,26 1,61 0,81 6,33 0,77 15 1,00 5,26 1,61 0,81 6,33 0,77 15 1,00 5,26 1,27 0,64 5,00 0,61 14 1,00 5,26 0,93 0,47 3,67 0,45 23 0,67 3,51 1,95 0,97 11,50 1,40</td></td<>	121 1,00 5,26 10,27 80 1,00 5,26 6,79 64 1,00 5,26 5,43 61 0,67 3,51 5,18 40 1,00 5,26 3,40 19 1,00 5,26 1,61 19 1,00 5,26 1,61 15 1,00 5,26 1,27 14 1,00 5,26 1,27 14 1,00 5,26 1,27 14 1,00 5,26 1,93 23 0,67 3,51 1,95 21 0,67 3,51 1,78 4 0,67 3,51 0,25 3 0,67 3,51 0,25 3 0,67 3,51 0,25 3 0,67 3,51 0,25 3 0,67 3,51 0,25 3 0,67 3,51 0,17 2 0,67	121 1,00 5,26 10,27 5,13 80 1,00 5,26 6,79 3,39 64 1,00 5,26 5,43 2,71 61 0,67 3,51 5,18 2,58 40 1,00 5,26 3,40 1,69 19 1,00 5,26 1,61 0,81 19 1,00 5,26 1,61 0,81 15 1,00 5,26 1,27 0,64 14 1,00 5,26 1,19 0,59 11 1,00 5,26 1,19 0,59 11 1,00 5,26 0,93 0,47 23 0,67 3,51 1,78 0,89 4 0,67 3,51 1,78 0,89 4 0,67 3,51 0,25 0,13 3 0,67 3,51 0,25 0,13 12 0,33 1,75 1,02 0,51	121 1,00 5,26 10,27 5,13 40,33 80 1,00 5,26 6,79 3,39 26,67 64 1,00 5,26 5,43 2,71 21,33 61 0,67 3,51 5,18 2,58 30,50 40 1,00 5,26 3,40 1,69 13,33 19 1,00 5,26 1,61 0,81 6,33 19 1,00 5,26 1,61 0,81 6,33 15 1,00 5,26 1,27 0,64 5,00 14 1,00 5,26 1,19 0,59 4,67 11 1,00 5,26 0,93 0,47 3,67 23 0,67 3,51 1,95 0,97 11,50 21 0,67 3,51 1,78 0,89 10,50 4 0,67 3,51 0,25 0,13 1,50 3 0,67 3,51 0,25	121 1,00 5,26 10,27 5,13 40,33 4,90 80 1,00 5,26 6,79 3,39 26,67 3,24 64 1,00 5,26 5,43 2,71 21,33 2,59 61 0,67 3,51 5,18 2,58 30,50 3,71 40 1,00 5,26 3,40 1,69 13,33 1,62 19 1,00 5,26 1,61 0,81 6,33 0,77 19 1,00 5,26 1,61 0,81 6,33 0,77 15 1,00 5,26 1,61 0,81 6,33 0,77 15 1,00 5,26 1,61 0,81 6,33 0,77 15 1,00 5,26 1,27 0,64 5,00 0,61 14 1,00 5,26 0,93 0,47 3,67 0,45 23 0,67 3,51 1,95 0,97 11,50 1,40

^{*}Valores expresados en millones.

Anexo 20. Valores calculados de abundancia de individuos de acuerdo a su origen (exótico, nativo e indeterminada) en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.

	E	Ex	N	lv .	Iı	nd
Sitio	n	%	n	%	n	%
La Palma	392	14,53	2284	84,66	22	0,82
Yurac Yacu	1829	21,04	6660	76,63	202	2,32
El Vergel	265	7,31	3170	87,40	192	5,29
San Carlos	1161	20,49	4504	79,51	0	0,00
San Pedro	98	4,15	2216	93,90	46	1,95

Anexo 21. Valores calculados de abundancia de individuos de acuerdo a la forma de dispersión de semillas (anemócora, autocora, hidrocora, hemerocora, zoócora e indeterminada) en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.

	I	A	A	\u]	H	H	m	7	Z	Iı	nd
Sitio	n	%	n	%	n	%	n	%	n	%	n	%
La Palma	1026	38,03	840	31,13	1209	44,81	1551	57,49	912	33,80	22	0,82
Yurac Yacu	3968	45,66	1084	12,47	3448	39,67	7235	83,25	3909	44,98	202	2,32
El Vergel	336	9,26	787	21,70	1251	34,49	2617	72,15	1282	35,35	192	5,29
San Carlos	4785	84,47	424	7,48	3988	70,40	5130	90,56	4274	75,45	0	0,00
San Pedro	184	7,80	47	1,99	201	8,52	2176	92,20	1941	82,25	46	1,95

Elaborado: Autor.

Anexo 22. Valores calculados de abundancia de individuos de acuerdo a su ciclo de vida (anual, perenne e indeterminada) en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.

	A	n]	P	Iı	ıd
Sitio	n	%	n	%	n	%
La Palma	1018	37,73	1658	61,45	22	0,82
Yurac Yacu	5194	59,76	3295	37,91	202	2,32
El Vergel	1565	43,15	1870	51,56	192	5,29
San Carlos	1725	30,45	3940	69,55	0	0,00
San Pedro	1985	84,11	329	13,94	46	1,95

Anexo 23. Valores calculados de abundancia de individuos de acuerdo al tipos de propagación (semilla, vegetativa e indeterminada) en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.

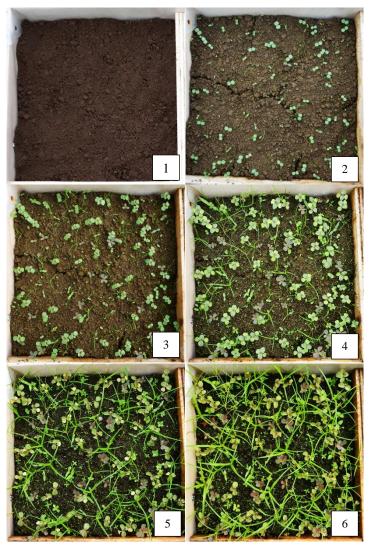
	i	S	V		Iı	nd
Sitio	n	%	n	%	n	%
La Palma	2676	99,18	642	23,80	22	0,82
Yurac Yacu	8489	97,68	1395	16,05	202	2,32
El Vergel	3435	94,71	39	1,08	192	5,29
San Carlos	5665	100,00	2900	51,19	0	0,00
San Pedro	2314	98,05	20	0,85	46	1,95

Anexo 24. Valores calculados de abundancia de individuos de acuerdo a su forma de vida (árbol, arbusto, hierba, helecho, trepadora e indeterminada) en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.

	A	Ar	A	rb	J	Hi]	He	,	Гr	Iı	nd
Sitio	n	%	n	%	n	%	n	%	n	%	n	%
La Palma	0	0,00	75	2,78	2601	96,40	0	0,00	0	0,00	22	0,82
Yurac Yacu	0	0,00	241	2,77	8248	94,90	0	0,00	0	0,00	202	2,32
El Vergel	1	0,03	38	1,05	3395	93,60	0	0,00	1	0,03	192	5,29
San Carlos	2	0,04	12	0,21	5650	99,74	0	0,00	1	0,02	0	0,00
San Pedro	4	0,17	0	0,00	2309	97,84	0	0,00	1	0,04	46	1,95

Elaborado: Autor.

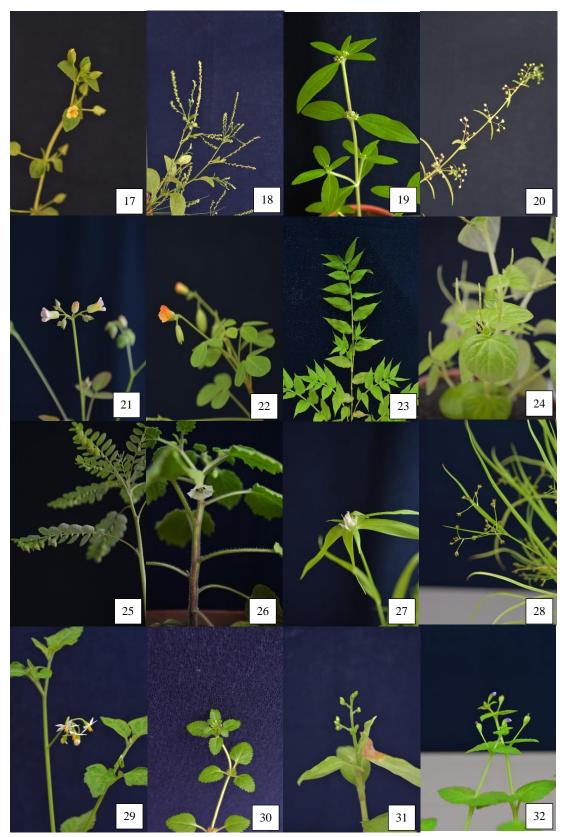
Anexo 25. Valores calculados de abundancia de individuos de acuerdo al tipo de planta (dicotiledónea, monocotiledónea e indeterminada) en el banco de semillas del suelo en plantaciones de teca de la zona central del litoral ecuatoriano, año 2019.


]	D		M	Ind		
Sitio	n	%	n	%	n	%	
La Palma	1614	59,82	1062	39,36	22	0,82	
Yurac Yacu	6885	79,22	1604	18,46	202	2,32	
El Vergel	2213	61,01	1222	33,69	192	5,29	
San Carlos	2626	46,35	3039	53,65	0	0,00	
San Pedro	376	15,93	1938	82,12	46	1,95	

Anexo 26. Fotografías del trabajo de campo y laboratorio efectuado para caracterizar el banco de semillas del suelo en plantaciones de teca localizadas en los cantones San Domingo, Valencia, Quevedo y Balzar, año 2019.

Establecimiento de UM (1); ubicación de SM (2); extracción (3, 4), codificación (5), tamizado (6) y extracción de raíces (7) a muestra de suelo; conteo, repicado (5) y trasplante (6) de plántulas a maceta.

Anexo 27. Fotografías del proceso de crecimiento de plántulas en bandeja de germinación con muestra de suelo proveniente de la UM2 (SM4) correspondiente a una plantación de teca de 10 años para el sitio Yurac, cantón Valencia, año 2019.



5 Semanas: día 0 (1), día 7 (2), día 14 (3), día 21 (4), día 28 (5), día 35 (6).

Anexo 28. Fotografías de algunas arvenses encontradas en el banco de semillas del suelo de plantaciones de teca en la zona central del litoral ecuatoriano, año 2019.

Acalypha arvensis Poepp. (1), Acalypha setosa A.Rich. (2), Browallia americana L.(3), Croton lobatus L. (4), Cyanthillium cinereum (L.) H.Rob. (5), Cyperus iria L. (6), Cyperus laevigatus L. (7), Cyperus sesquiflorus (Torr.) Mattf. & Kük. (8), Drymaria cordata (L.) Willd. ex Schult. (9), Eleusine indica (L.) Gaertn. (10), Emilia fosbergii Nicolson (11), Euphorbia graminea Jacq. (12), Fimbristylis dichotoma (L.) Vahl (13), Fimbristylis littoralis Gaudich. (14), Hybanthus attenuatus (Humb. & Bonpl. ex Schult.) Schulze-Menz (15), Laportea aestuans (L.) Chew (16).

Mecardonia procumbens (Mill.) Small (17), Microtea debilis Sw. (18), Mitracarpus hirtus (L.) DC. (19), Mollugo verticillata L. (20), Oxalis corniculata L. (21), Oxalis barrelieri L. (22), Panicum trichoides Sw. (23), Peperomia pellucida (L.) Kunth (24), Phyllanthus urinaria L. (25), Physalis angulata L.(26), Rhynchospora radicans (Schltdl. & Cham.) (27), Scirpus sp. (28), Solanum americanum Mill. (29), Stemodia verticillata (Mill.) Hassl. (30), Tripogandra serrulata (Vahl) Handlos (31), Veronica persica Poir. (32).

CERTIFICACIÓN

El suscrito, Ing. For. Edwin Jiménez Romero M.Sc., docente de la Universidad Técnica Estatal de Quevedo, certifica que el proyecto de investigación del estudiante Sánchez Ormaza Juan Carlos con el tema titulado "Caracterización del banco de semillas de arvenses en plantaciones forestales de *Tectona grandis* L.f. (teca) en la zona central del litoral ecuatoriano, año 2019", fue sometido al URKUND, arrojando el 0% de similitud en contenidos, verificando las correcciones pertinentes y considerando el reglamento e instructivo del proyecto de investigación de la Universidad Técnica Estatal de Quevedo.

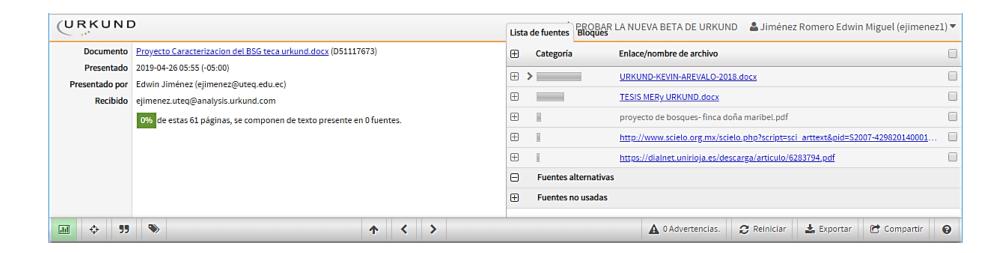
Ing. For. Edwin Jiménez Romero M.Sc.

DIRECTOR DEL PROYECTO DE INVESTIGACIÓN

Urkund Analysis Result

Analysed Document: Proyecto Caracterizacion del BSG teca urkund.docx (D51117673)

Submitted: 4/26/2019 12:55:00 PM Submitted By: ejimenez@uteq.edu.ec


Significance: 0 %

Sources included in the report:

Instances where selected sources appear:

0

Tema: Caracterización del banco de semillas de arvenses en plantaciones forestales de *Tectona grandis* L.f. (teca) en la zona central del litoral ecuatoriano, año 2019.

